【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需把正弦曲線y=sinx上所有點( )
A.向右平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的 倍,縱坐標不變
B.向左平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的 倍,縱坐標不變
C.向右平移 個單位長度,再將所得圖象上的點橫坐標伸長為原來的2倍,縱坐標不變
D.向左平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的2倍,縱坐標不變
【答案】A
【解析】解:把正弦曲線y=sinx上所有點向右平移 個單位長度,可得y=sin(x﹣ )的圖象;
再將所得圖象上的點橫坐標縮短為原來的 倍,縱坐標不變,可得函數(shù)y=sin(2x﹣ )的圖象,
故選:A.
【考點精析】解答此題的關鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=ax2﹣(a+1)x+1
(1)解關于x的不等式f(x)>0;
(2)若對任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為平行四邊形,AB=3,AC=4,AD=5,SA⊥平面ABCD.
(1)證明:AC⊥平面SAB;
(2)若SA=2,求三棱錐A﹣SCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】證明
(1)如果a,b都是正數(shù),且a≠b,求證: + > +
(2)設x>﹣1,m∈N* , 用數(shù)學歸納法證明:(1+x)m≥1+mx.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=lgx2 , g(x)=2lgx?
B.f(x)= ? ,g(x)=
C.f(x)=x﹣2,g(x)= ?
D.f(x)=lgx﹣2,g(x)=lg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 + =1(a>b>0)的離心率為 ,且過點( , ).
(1)求橢圓方程;
(2)設不過原點O的直線l:y=kx+m(k≠0),與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為k1、k2 , 滿足4k=k1+k2 , 試問:當k變化時,m2是否為定值?若是,求出此定值,并證明你的結論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù) 在區(qū)間[﹣ , ]上的圖象時,列表并填入了部分數(shù)據(jù),如表:
2x﹣ | ﹣ π | ﹣π | ﹣ | 0 | π | |
x | ﹣ | ﹣ | ﹣ | |||
f(x) |
(1)請將上表數(shù)據(jù)補充完整,并在給出的直角坐標系中,畫出f(x)在區(qū)間[﹣ , ]上的圖象;
(2)求f(x)的最小值及取最小值時x的集合;
(3)求f(x)在 時的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元.根據(jù)市場調查,銷售商一次訂購量不會超過500件.
(1)設一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式;
(2)當銷售商一次訂購多少件時,該服裝廠獲得的利潤最大,最大利潤是多少元? (服裝廠售出一件服裝的利潤=實際出廠單價﹣成本)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com