【題目】已知直線lx2y20.

1)求直線l1yx2關(guān)于直線l對(duì)稱的直線l2的方程;

2)求直線l關(guān)于點(diǎn)A(1,1)對(duì)稱的直線方程.

【答案】(1)7xy140;(2x2y40.

【解析】

1)先求出兩直線的交點(diǎn)P(2,0),再求出,即得直線l2的方程;(2)直線l關(guān)于點(diǎn)A(1,1)對(duì)稱的直線和直線l平行,所以設(shè)所求的直線方程為x2ym0,求出m的值即得解.

1)由解得交點(diǎn)P(2,0)

l1上取點(diǎn)M(0,-2),

M關(guān)于l的對(duì)稱點(diǎn)設(shè)為N(a,b),

,

解得,所以,

又直線l2過點(diǎn)P(2,0),

所以直線l2的方程為7xy140.

2)直線l關(guān)于點(diǎn)A(1,1)對(duì)稱的直線和直線l平行,

所以設(shè)所求的直線方程為x2ym0.

l上取點(diǎn)B(0,1),則點(diǎn)B(0,1)關(guān)于點(diǎn)A(1,1)的對(duì)稱點(diǎn)C(2,1)必在所求的直線上,

所以,所以m=-4,

即所求的直線方程為x2y40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,點(diǎn)在橢圓.

求橢圓的方程;

已知為平面內(nèi)的兩個(gè)定點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,D,E分別為AB,AC的中點(diǎn),,以DE為折痕將折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,如圖.

(1)證明:;

(2)若平面DEP平面BCED,求直線DC與平面BCP所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若為銳角,, ,求的值;

2)函數(shù),若對(duì)任意都有恒成立,求實(shí)數(shù)的最大值;

3)已知,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且2,,成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前項(xiàng)和;

(3)對(duì)于(2)中的,設(shè),求數(shù)列中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】倫敦眼坐落在英國倫敦泰晤士河畔,是世界上首座觀景摩天輪,又稱千禧之輪,該摩天輪的半徑為6(單位:),游客在乘坐艙升到上半空鳥瞰倫敦建筑,倫敦眼與建筑之間的距離12(單位:),游客在乘坐艙看建筑的視角為.

1)當(dāng)乘坐艙在倫敦眼的最高點(diǎn)時(shí),視角,求建筑的高度;

2)當(dāng)游客在乘坐艙看建筑的視角時(shí),拍攝效果最好.若在倫敦眼上可以拍攝到效果最好的照片,求建筑的最低高度.

(說明:為了便于計(jì)算,數(shù)據(jù)與實(shí)際距離有誤差,倫敦眼的實(shí)際高度為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客運(yùn)公司用、兩種型號(hào)的車輛承擔(dān)甲、乙兩地的長(zhǎng)途客運(yùn)業(yè)務(wù),每車每天往返一次.、兩種型號(hào)的車輛的載客量分別是32人和48人,從甲地到乙地的營(yíng)運(yùn)成本依次為1500元/輛和2000元/輛.公司擬組建一個(gè)不超過21輛車的車隊(duì),并要求種型號(hào)的車不多于種型號(hào)的車5輛.若每天從甲地運(yùn)送到乙地的旅客不少于800人,為使公司從甲地到乙地的營(yíng)運(yùn)成本最小,應(yīng)配備、兩種型號(hào)的車各多少輛?并求出最小營(yíng)運(yùn)成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論:

“直線l與平面平行”是“直線l在平面外”的充分不必要條件;

p,,則;

命題“設(shè)a,,若,則”為真命題;

”是“函數(shù)上單調(diào)遞增”的充要條件.

其中所有正確結(jié)論的序號(hào)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案