【題目】現(xiàn)對一塊長米,寬米的矩形場地ABCD進行改造,點E為線段BC的中點,點F在線段CD或AD上(異于A,C),設(shè)(單位:米),的面積記為(單位:平方米),其余部分面積記為(單位:平方米).
(1)求函數(shù)的解析式;
(2)設(shè)該場地中部分的改造費用為(單位:萬元),其余部分的改造費用為(單位:萬元),記總的改造費用為W單位:萬元),求W最小值,并求取最小值時x的值.
科目:高中數(shù)學 來源: 題型:
【題目】玉山一中籃球體育測試要求學生完成“立定投籃”和“三步上籃”兩項測試,“立定投籃”和“三步上籃”各有2次投籃機會,先進行“立定投籃”測試,如果合格才能參加“三步上籃”測試.為了節(jié)約時間,每項測試只需且必須投中一次即為合格.小華同學“立定投籃”和“三步上籃”的命中率均為.假設(shè)小華不放棄任何一次投籃機會且每次投籃是否命中相互獨立.
(1)求小華同學兩項測試均合格的概率;
(2)設(shè)測試過程中小華投籃次數(shù)為X,求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A. 命題的否定是:
B. 命題中,若,則的否命題是真命題
C. 如果為真命題,為假命題,則為真命題,為假命題
D. 是函數(shù)的最小正周期為的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點與雙曲線的焦點重合,過橢圓的右頂點任意作直線,交拋物線于,兩點,且,其中為坐標原點.
(1)試求橢圓的方程;
(2)過橢圓的左焦點作互相垂直的兩條直線,分別交橢圓于點、、、,試求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題14分)
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點.
(Ⅰ)求證:PE⊥BC;
(Ⅱ)求證:平面PAB⊥平面PCD;
(Ⅲ)求證:EF∥平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)且不恒為零,對滿足,且在上單調(diào)遞增.
(1)求,的值,并判斷函數(shù)的奇偶性;
(2)求的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)滿足以下三個條件:
①對任意實數(shù),都有;
②;
③在區(qū)間上為增函數(shù).
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)求證:;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,
①若曲線與直線相切,求的值;
②若曲線與直線有公共點,求的取值范圍.
(2)當時,不等式對于任意正實數(shù)恒成立,當取得最大值時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)=|x2﹣ax|(a∈R),設(shè)g(x)=f(x+l)﹣f(x).
(1)若y=g(x)為奇函數(shù),求a的值:
(2)設(shè)h(x),x∈(0,+∞)
①若a≤0,證明:h(x)>2:
②若h(x)的最小值為﹣1,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com