【題目】過(guò)點(diǎn)的直線被曲線截得的弦長(zhǎng)為2,則直線的方程為______

【答案】x35x+12y30

【解析】

曲線化簡(jiǎn)得:(x12+y225,根據(jù)圓的弦長(zhǎng)公式2,d=2,分直線l的斜率不存在與存在兩種情況,利用點(diǎn)到直線距離公式計(jì)算即可得到結(jié)果.

曲線的方程化簡(jiǎn)得:(x12+y225,表示圓心為(1,2),半徑為的圓,

由圓的弦長(zhǎng)公式2,可得圓心到直線l的距離d=2,

當(dāng)直線l的斜率不存在時(shí),直線l的方程為:x3.此時(shí)圓心到x3的距離為2,滿足題意;

當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為:ykx3)﹣1.即kxy3k10

k,直線l的方程為:5x+12y30

故答案為x35x+12y30

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為6,離心率為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓C的左右焦點(diǎn)分別為,,左右頂點(diǎn)分別為AB,點(diǎn)MN為橢圓C上位于x軸上方的兩點(diǎn),且,直線的斜率為,記直線AMBN的斜率分別為,試證明:的值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:的焦距為,且C過(guò)點(diǎn).

(1)求橢圓C的方程;

(2)設(shè)、分別是橢圓C的下頂點(diǎn)和上頂點(diǎn),P是橢圓上異于的任意一點(diǎn),過(guò)點(diǎn)P作軸于M,N為線段PM的中點(diǎn),直線與直線交于點(diǎn)D,E為線段的中點(diǎn),O為坐標(biāo)原點(diǎn),則是否為定值,若是,請(qǐng)求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,,點(diǎn)D,E分別為AB,的中點(diǎn).

1)求證:平面平面

2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是矩形, 平面, ,以的中點(diǎn)為球心, 為直徑的球面交于點(diǎn),交于點(diǎn).

(1)求證:平面平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的定義域?yàn)?/span>,,使得不等式成立,關(guān)于的不等式的解集記為.

(1)若為真,求實(shí)數(shù)的取值集合

(2)在(1)的條件下,若的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“搜索指數(shù)”是網(wǎng)民通過(guò)搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計(jì)指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對(duì)該關(guān)鍵詞的搜索次數(shù)越多,對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個(gè)關(guān)鍵詞的搜索指數(shù)變化的走勢(shì)圖.

根據(jù)該走勢(shì)圖下列結(jié)論正確的是( )

A. 這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化

B. 這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱

C. 從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來(lái)看,去年10月份的方差小于11月份的方差

D. 從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來(lái)看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,其左,右焦點(diǎn)分別為,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且,,其中O為坐標(biāo)原點(diǎn).

1)求橢圓C的方程;

2)過(guò)點(diǎn),且斜率為的動(dòng)直線l交橢圓于A,B兩點(diǎn),求弦AB的垂直平分線在軸上截距的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年美國(guó)數(shù)學(xué)家阿佩爾與哈肯證明了四色定理.其內(nèi)容是:任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.用數(shù)學(xué)語(yǔ)言表示為將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用1,23,4四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線圍成的各區(qū)域(如區(qū)域D由兩個(gè)邊長(zhǎng)為1的小正方形構(gòu)成)上分別標(biāo)有數(shù)字12,3,4的四色地圖符合四色定理,區(qū)域A、B、C、D、EF標(biāo)記的數(shù)字丟失若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為4的區(qū)域的概率是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案