設(shè)圓過雙曲線的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),圓心在此雙曲線上,則圓心到雙曲線中心的距離為( )
A.4
B.
C.
D.5
【答案】分析:由雙曲線的幾何性質(zhì)易知圓C過雙曲線同一支上的頂點(diǎn)和焦點(diǎn),所以圓C的圓心的橫坐標(biāo)為4.故圓心坐標(biāo)為(4,±).由此可求出它到雙曲線中心的距離
解答:解:由雙曲線的幾何性質(zhì)易知圓C過雙曲線同一支上的頂點(diǎn)和焦點(diǎn),
不妨設(shè)過雙曲線右支的焦點(diǎn)和頂點(diǎn)
所以圓C的圓心的橫坐標(biāo)為4.
故圓心坐標(biāo)為(4,±).
∴它到中心(0,0)的距離為d==
故選B.
點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和應(yīng)用,解題時(shí)注意圓的性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓過雙曲線的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),圓心在此雙曲線上,則圓心到雙曲線中心的距離是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓過雙曲線的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),圓心在此雙曲線上,則圓心到雙曲線中心的距離為( 。                                                                                                                            

A.  4             B.               C.         D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年四川省成都市雙流縣棠湖中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)圓過雙曲線的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),圓心在此雙曲線上,則圓心到雙曲線中心的距離為( )
A.4
B.
C.
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省溫州中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)圓過雙曲線的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),圓心在此雙曲線上,則圓心到雙曲線中心的距離為( )
A.4
B.
C.
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案