設(shè)圓過雙曲線的一個頂點和一個焦點,圓心在此雙曲線上,則圓心到雙曲線中心的距離為( 。                                                                                                                            

A.  4             B.               C.         D.5

B


解析:

由題意可知圓過雙曲線同一側(cè)的一個頂點和一個焦點(否則圓心不能在雙曲線上),不妨設(shè)過,∴圓心在直線上,代入雙曲線的方程解得

。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)圓過雙曲線的一個頂點和一個焦點,圓心在此雙曲線上,則圓心到雙曲線中心的距離是____________.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年四川省成都市雙流縣棠湖中學高二(上)期中數(shù)學試卷(解析版) 題型:選擇題

設(shè)圓過雙曲線的一個頂點和一個焦點,圓心在此雙曲線上,則圓心到雙曲線中心的距離為( )
A.4
B.
C.
D.5

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年浙江省溫州中學高三(上)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

設(shè)圓過雙曲線的一個頂點和一個焦點,圓心在此雙曲線上,則圓心到雙曲線中心的距離為( )
A.4
B.
C.
D.5

查看答案和解析>>

科目:高中數(shù)學 來源:2007年湖北省黃岡中學、華師一附中、鄂南高中、黃石二中、孝感高中、荊州中學、襄樊四中、襄樊五中高三第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:選擇題

設(shè)圓過雙曲線的一個頂點和一個焦點,圓心在此雙曲線上,則圓心到雙曲線中心的距離為( )
A.4
B.
C.
D.5

查看答案和解析>>

同步練習冊答案