(本小題滿分14分)
設(shè)橢圓)的兩個(gè)焦點(diǎn)是),且橢圓與圓有公共點(diǎn).
(1)求的取值范圍;
(2)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;
(3)對(duì)(2)中的橢圓,直線)與交于不同的兩點(diǎn)、,若線段的垂直平分線恒過點(diǎn),求實(shí)數(shù)的取值范圍.
(1)(2)(3)

試題分析:解:(1)由已知,,
∴方程組有實(shí)數(shù)解,從而,故 …2分
所以,即的取值范圍是.                   ……………4分
(2)設(shè)橢圓上的點(diǎn)到一個(gè)焦點(diǎn)的距離為,

).                           ……………6分
,∴當(dāng)時(shí),,
于是,,解得 .
∴所求橢圓方程為.                       ……………8分
(3)由 (*)
∵直線與橢圓交于不同兩點(diǎn), ∴△,即.①  ………10分
設(shè),則是方程(*)的兩個(gè)實(shí)數(shù)解,
,∴線段的中點(diǎn)為,
又∵線段的垂直平分線恒過點(diǎn),∴,
,即(k)②          ……………12分
由①,②得,又由②得,
∴實(shí)數(shù)的取值范圍是.                            ……………14分
點(diǎn)評(píng):本題第一小題也可這樣來求解,橢圓跟y軸正半軸的交點(diǎn)為,若橢圓要與圓相交,則;第二小題可以結(jié)合橢圓的特點(diǎn)來求,當(dāng)橢圓上的點(diǎn)是時(shí),它到附近的焦點(diǎn)的距離就是最短距離;第三小題需要注意直線與橢圓相交時(shí)應(yīng)滿足的條件。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)在橢圓+上,為焦點(diǎn) 且,則的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

我國發(fā)射的“神舟七號(hào)”飛船的運(yùn)行軌道是以地球的中心為一個(gè)焦點(diǎn)的橢圓,近地點(diǎn)A距地面為千米,遠(yuǎn)地點(diǎn)B距地面為千米,地球半徑為千米,則飛船運(yùn)行軌道的短軸長(zhǎng)為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖橢圓的兩個(gè)焦點(diǎn)為、和頂點(diǎn)、構(gòu)成面積為32的正方形.

(1)求此時(shí)橢圓的方程;
(2)設(shè)斜率為的直線與橢圓相交于不同的兩點(diǎn)、、的中點(diǎn),且. 問:、兩點(diǎn)能否關(guān)于直線對(duì)稱. 若能,求出的取值范圍;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的右焦點(diǎn)為點(diǎn)在橢圓上,以點(diǎn)為圓心的圓與軸相切,且同時(shí)與軸相切于橢圓的右焦點(diǎn),則橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),過F1的直線交橢圓于A,B兩點(diǎn),若|F2A|+|F2B|=12,則|AB|=               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,為橢圓的四個(gè)頂點(diǎn),F(xiàn)為其右焦點(diǎn),直線與直線B1F相交于點(diǎn)T,線段OT與橢圓的交點(diǎn)M恰為線段OT的中點(diǎn),則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓C的對(duì)稱軸為坐標(biāo)軸,且短軸長(zhǎng)為4,離心率為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點(diǎn)在y軸上,斜率為1的直線l與C相交于A,B兩點(diǎn),且
,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的準(zhǔn)線與雙曲線相切,則雙曲線的離心率        

查看答案和解析>>

同步練習(xí)冊(cè)答案