我國發(fā)射的“神舟七號”飛船的運行軌道是以地球的中心
為一個焦點的橢圓,近地點
A距地面為
千米,遠地點
B距地面為
千米,地球半徑為
千米,則飛船運行軌道的短軸長為( )
試題分析:根據(jù)題意,由于飛船的運行軌道是以地球的中心
為一個焦點的橢圓,且近地點
A距地面為
千米,遠地點
B距地面為
千米,地球半徑為
千米,則根據(jù)橢圓的性質(zhì)可知
那么根據(jù)
,進而得到2b的長度為
,選A.
點評:解決的該試題的關(guān)鍵是對于近地點和遠地點距離的表示,從而得到a,bc的關(guān)系式,求解得到方程,得到性質(zhì),屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題15分)已知點
是橢圓
E:
(
)上一點,
F1、
F2分別是橢圓
E的左、右焦點,
O是坐標原點,
PF1⊥
x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A、B是橢圓E上兩個動點,
(
).求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當△PAB面積取得最大值時,求λ的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖:在面積為1的D
PMN中,tanÐ
PMN=
,tanÐ
MNP=-2,試建立適當?shù)淖鴺讼,求?i>M、
N為焦點且過點
P的橢圓方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
,F(xiàn)
1,F(xiàn)
2為其左、右焦點,P為橢圓C上任一點,
的重心為G,內(nèi)心I,且有
(其中
為實數(shù)),橢圓C的離心率e=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
為直角三角形,三邊長分別為
,其中斜邊AB=
,若點
在直線
上運動,則
的最小值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
我們把離心率為黃金比
的橢圓稱為“優(yōu)美橢圓”.設(shè)
為“優(yōu)美橢圓”,F(xiàn)、A分別是左焦點和右頂點,B是短軸的一個端點,則
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)斜率為2的直線
l過雙曲線
的右焦 點,且與雙曲線的左、右兩支分別相交,則雙曲線離心率e的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
拋物線頂點在坐標原點,焦點與橢圓
的右焦點
重合,過點
斜率為
的直線與拋物線交于
,
兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求△
的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
設(shè)橢圓
(
)的兩個焦點是
和
(
),且橢圓
與圓
有公共點.
(1)求
的取值范圍;
(2)若橢圓上的點到焦點的最短距離為
,求橢圓的方程;
(3)對(2)中的橢圓
,直線
(
)與
交于不同的兩點
、
,若線段
的垂直平分線恒過點
,求實數(shù)
的取值范圍.
查看答案和解析>>