精英家教網 > 高中數學 > 題目詳情
(本小題滿分13分)
已知橢圓C的對稱軸為坐標軸,且短軸長為4,離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的焦點在y軸上,斜率為1的直線l與C相交于A,B兩點,且
,求直線l的方程。
(Ⅰ)(Ⅱ)

試題分析:(Ⅰ)設橢圓C的長半軸長為a(a>0),短半軸長為b(b>0),
則2b=4,。            2分
解得a=4,b=2。                      3分
因為橢圓C的對稱軸為坐標軸,
所以橢圓C的方程為標準方程,且為。     5分
(Ⅱ)設直線l的方程為,A(x1,y1),B(x2,y2),     6分
由方程組,消去y,
,      7分
由題意,得, 8分
,  9分
因為
, 11分
所以,解得m=±2,
驗證知△>0成立,
所以直線l的方程為。      13分
點評:直線與橢圓相交問題常借助與韋達定理設而不求簡化計算,本題涉及到的弦長公式,其中k是直線斜率,是兩交點橫坐標
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題15分)已知點是橢圓E)上一點,F1、F2分別是橢圓E的左、右焦點,O是坐標原點,PF1x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設A、B是橢圓E上兩個動點,).求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當△PAB面積取得最大值時,求λ的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖:在面積為1的DPMN中,tanÐPMN=,tanÐMNP=-2,試建立適當的坐標系,求以M、N為焦點且過點P的橢圓方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,已知直線OP1OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.

(1)若P1P2點的橫坐標分別為x1、x,則x1x2之間滿足怎樣的關系?并證明你的結論;
(2)求雙曲線E的方程;
(3)設雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
設橢圓)的兩個焦點是),且橢圓與圓有公共點.
(1)求的取值范圍;
(2)若橢圓上的點到焦點的最短距離為,求橢圓的方程;
(3)對(2)中的橢圓,直線)與交于不同的兩點、,若線段的垂直平分線恒過點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在△ABC中,角A,B,C的對邊分別a,b,c,若.則直線被圓所截得的弦長為       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題12分)已知橢圓的離心率為,為橢圓的右焦點,兩點在橢圓上,且,定點
(1)若時,有,求橢圓的方程;
(2)在條件(1)所確定的橢圓下,當動直線斜率為k,且設時,試求關于S的函數表達式f(s)的最大值,以及此時兩點所在的直線方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知方程 表示焦點在y軸上的橢圓,則k的取值范圍是(   )
A.6<k<9B.k>3C.k>9D.k<3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若點到點的距離比它到直線的距離少1,則動點的軌跡方程是    __________.

查看答案和解析>>

同步練習冊答案