【題目】已知函數(shù),.現(xiàn)有如下兩種圖象變換方案:
方案1:將函數(shù)的圖像上所有點的橫坐標變?yōu)樵瓉淼囊话,縱坐標不變,再將所得圖象向左平移個單位長度;
方案2:將函數(shù)的圖象向左平移個單位長度,再將所得圖象上所有點的橫坐標變?yōu)樵瓉淼囊话,縱坐標不變.
請你從中選擇一種方案,確定在此方案下所得函數(shù)的解析式,并解決如下問題:
(1)畫出函數(shù)在長度為一個周期的閉區(qū)間上的圖象;
(2)請你研究函數(shù)的定義域,值域,周期性,奇偶性以及單調性,并寫出你的結論.
【答案】(1),圖象見解析;(2)見解析.
【解析】
利用函數(shù)的圖象變換規(guī)律可知無論在何種方案下所得的函數(shù)都是,
(1)作出函數(shù)在這一周期上的圖象:
(2)利用正弦函數(shù)的圖象和性質即可得出結論.
解:方案1:將函數(shù)的圖像上所有點的橫坐標變?yōu)樵瓉淼囊话,縱坐標不變得到,再將圖象向左平移個單位長度得到,即
方案2:將函數(shù)的圖象向左平移個單位長度得到,再將圖象上所有點的橫坐標變?yōu)樵瓉淼囊话,縱坐標不變得到,即
所以,無論在何種方案下所得的函數(shù)都是,
(1)如圖,是函數(shù)在這一周期上的圖象:
(2)函數(shù)
定義域:;值域:;周期:;
奇偶性:因為,,所以不具有奇偶性.
單調性:令,
解得,,即函數(shù)在,上單調遞增;
同理可得函數(shù)的單調遞減區(qū)間為:,
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求該單位員工當年年薪的平均值和中位數(shù);
(2)已知員工年薪收入與工作年限成正相關關系,某員工工作第一年至第四年的年薪分別為4萬元、5.5萬元、6萬元、8.5萬元,預測該員工第六年的年薪為多少?
附:線性回歸方程中系數(shù)計算公式分別為:,,其中、為樣本均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為.
求曲線C的直角坐標方程與直線l的極坐標方程;
Ⅱ若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先閱讀下列不等式的證法,再解決后面的問題:
已知,,求證:.
證明:構造函數(shù),
即
.
因為對一切,恒有,
所以,從而得.
(1)若,,請寫出上述結論的推廣式;
(2)參考上述證法,對你推廣的結論加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)觀測,某公路段在某時段內的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關系:.
(1)在該時段內,當汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到0.01)
(2)為保證在該時段內車流量至少為10千輛/小時,則汽車的平均速度應控制在什么范圍內?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,函數(shù).
(1)若,求證:函數(shù)為奇函數(shù);
(2)若,判斷并證明函數(shù)的單調性;
(3)若,函數(shù)在區(qū)間上的取值范圍是,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年10月18日-27日,第七屆世界軍人運動會在湖北武漢舉辦,中國代表團共獲得133金64銀42銅,共239枚獎牌.為了調查各國參賽人員對主辦方的滿意程度,研究人員隨機抽取了500名參賽運動員進行調查,所得數(shù)據(jù)如下所示,現(xiàn)有如下說法:①在參與調查的500名運動員中任取1人,抽到對主辦方表示滿意的男性運動員的概率為;②在犯錯誤的概率不超過1%的前提下可以認為“是否對主辦方表示滿意與運動員的性別有關”;③沒有99.9%的把握認為“是否對主辦方表示滿意與運動員的性別有關”;則正確命題的個數(shù)為( )附:
男性運動員 | 女性運動員 | |||||
對主辦方表示滿意 | 200 | 220 | ||||
對主辦方表示不滿意 | 50 | 30 | ||||
0.100 | 0.050 | 0.010 | 0.001 | |||
k | 2.706 | 3.841 | 6.635 | 10.828 | ||
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】焦點在x軸上的橢圓C:經(jīng)過點,橢圓C的離心率為.,是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標準方程;
(2)若點M為的中點(O為坐標原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com