((12分)已知函數(shù)
(
),其中
.(Ⅰ)當
時,討論函數(shù)
的單調性;(Ⅱ)若函數(shù)
僅在
處有極值,求
的取值范圍;(Ⅲ)若對于任意的
,不等式
在
上恒成立,求
的取值范圍.
(I)
在
,
內是增函數(shù),在
,
內是減函數(shù)(Ⅱ)
(Ⅲ)
解:
.
當
時,
.
令
,解得
,
,
.當
變化時,
,
的變化情況如下表:
所以
在
,
內是增函數(shù),在
,
內是減函數(shù).
(Ⅱ)解:
,顯然
不是方程
的根.
為使
僅在
處有極值,必須
成立,即有
.
解些不等式,得
.這時,
是唯一極值.因此滿足條件的
的取值范圍是
.
(Ⅲ)解:由條件
,可知
,從而
恒成立.
當
時,
;當
時,
.因此函數(shù)
在
上的最大值是
與
兩者中的較大者.為使對任意的
,不等式
在
上恒成立,當且僅當
,即
,在
上恒成立.所以
,因此滿足條件的
的取值范圍是
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
的圖象與
軸的交點為
,且曲線在
點處的切線方程為
,若函數(shù)在
處取得極值
,試求函數(shù)的解析式,并確定函數(shù)的單調減區(qū)間。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)設
其導函數(shù)
的圖象經(jīng)過點
,(2,0),如右圖所示。
(Ⅰ)求函數(shù)
的解析式和極值;
(Ⅱ)對
都有
恒成立,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)設函數(shù)
,其圖象對應的曲線設為G.(Ⅰ)設
、
、
,
為經(jīng)過點(2,2)的曲線G的切線,求
的方程;
(Ⅱ)已知曲線G在點A
、B
處的切線的斜率分別為0、
,求證:
;
(Ⅲ)在(Ⅱ)的條件下,當
時,
恒成立,求常數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
是由滿足下列兩個條件的函數(shù)
構成的集合:①方程
有實根; ②函數(shù)
的導函數(shù)
滿足
(1)判斷函數(shù)
是不是集合
中的元素,并說明理由;(2)若集合
的元素
具有以下性質:“設
的定義域為
,對于任意
都存在
使得等式
成立.”試用這一性質證明:方程
只有一個實數(shù)根;(3設
是方程
的實根,求證:對函數(shù)
定義域中任意
,
,當
,且
時,
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分)
設曲線
≥0)在點M(t,
)處的切線
與x軸y軸所圍成的三角形面積為
,
求
的解析式.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)y=x+2cosx在[0,
]上取得最大值時,x的值為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)已知
y=
F(
x)的導函數(shù)為
f(
x)=
ax3+
bx2+
cx+
d(
a≠0),
函數(shù)
y=
f(
x)的圖象如右圖所示,且函數(shù)
y=
F(
x)的圖象經(jīng)過(1,2)和(-1,2)兩點,又過點(1,0)作斜率之積為-10的兩條直線
l1和
l2,
l1和
l2與函數(shù)
的圖象分別相交于
A、
B兩點和
C、
D兩點,
O為坐標原點。
(1)求函數(shù)
y=
f(
x)的對稱中心的坐標;
(2)若線段
AB和
CD的中點分別為
M,
N,求三角
OMN面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)f(x)的導函數(shù)為f′(x),且f(x)=2xf′(1)+lnx,則f′(1)=______.
查看答案和解析>>