【題目】已知O為坐標(biāo)原點(diǎn),拋物線C:y2=nx(n>0)在第一象限內(nèi)的點(diǎn)P(2,t)到焦點(diǎn)的距離為 ,曲線C在點(diǎn)P處的切線交x軸于點(diǎn)Q,直線l1經(jīng)過點(diǎn)Q且垂直于x軸.
(Ⅰ)求線段OQ的長;
(Ⅱ)設(shè)不經(jīng)過點(diǎn)P和Q的動(dòng)直線l2:x=my+b交曲線C于點(diǎn)A和B,交l1于點(diǎn)E,若直線PA,PE,PB的斜率依次成等差數(shù)列,試問:l2是否過定點(diǎn)?請說明理由.

【答案】解:(Ⅰ)由拋物線C:y2=nx(n>0)在第一象限內(nèi)的點(diǎn)P(2,t)到焦點(diǎn)的距離為 ,所以n=2,故拋物線方程為y2=2x,P(2,2)
所以曲線C在第一象限的圖象對(duì)應(yīng)的函數(shù)解析式為 ,則 .
故曲線C在點(diǎn)P處的切線斜率 ,切線方程為:
令y=0得x=﹣2,所以點(diǎn)Q(﹣2,0)
故線段OQ=2
(Ⅱ)由題意知l1:x=﹣2,因?yàn)閘2與l1相交,所以m≠0
設(shè)l2:x=my+b,令x=﹣2,得 ,故
設(shè)A(x1 , y1),B(x2 , y2),
消去x得:y2﹣2my﹣2b=0
則y1+y2=2m,y1y2=﹣2b
直線PA的斜率為 ,
同理直線PB的斜率為 ,直線PE的斜率為
因?yàn)橹本PA,PE,PB的斜率依次成等差數(shù)列
所以 + =2

因?yàn)閘2不經(jīng)過點(diǎn)Q,所以b≠﹣2
所以2m﹣b+2=2m,即b=2
故l2:x=my+2,即l2恒過定點(diǎn)(2,0)
【解析】(Ⅰ)求出拋物線方程,曲線C在點(diǎn)P處的切線方程,得出Q的坐標(biāo),即可求線段OQ的長;(Ⅱ)求出直線PA的斜率為 ,直線PB的斜率為 ,直線PE的斜率為 ,因?yàn)橹本PA,PE,PB的斜率依次成等差數(shù)列,得出2m﹣b+2=2m,即b=2,即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家“精準(zhǔn)扶貧,產(chǎn)業(yè)扶貧”的戰(zhàn)略,某市面向全市征召《扶貧政策》義務(wù)宣傳志愿者,從年齡在[20,45]的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示.
(1)求圖中x的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在[35,40)歲的人數(shù);
(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動(dòng),再從這10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是錯(cuò)誤命題的個(gè)數(shù)有(  )

(1)若命題p為假命題,命題為假命題,則命題“”為假命題;

(2)命題“若,則”的否命題為“若,則”;

(3)對(duì)立事件一定是互斥事件;

(4)為兩個(gè)事件,則P(A∪B)=P(A)+P(B);

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù)。乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中經(jīng)X表示。

1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差

2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓軸,軸的正半軸分別交于A,B兩點(diǎn),原點(diǎn)O到直線AB的距離為該橢圓的離心率為

(1)求橢圓的方程

(2)是否存在過點(diǎn)P(的直線與橢圓交于M,N兩個(gè)不同的點(diǎn),使成立?若存在,求出的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心坐標(biāo)且與線y=3x+4相切,

(1)求圓C的方程;

(2)設(shè)直線與圓C交于M,N兩點(diǎn),那么以MN為直徑的圓能否經(jīng)過原點(diǎn),若能,請求出直線MN的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇3月1日至3月15日中的某一天到達(dá)該市,并停留2天.

(Ⅰ)求此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率

(Ⅱ)求此人在該市停留期間只有1天空氣重度污染的概率;

(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A1 , B1分別是邊BA,CB的中點(diǎn),A2 , B2分別是線段A1A,B1B的中點(diǎn),…,An , Bn分別是線段 的中點(diǎn),設(shè)數(shù)列{an},{bn}滿足:向量 ,有下列四個(gè)命題,其中假命題是(
A.數(shù)列{an}是單調(diào)遞增數(shù)列,數(shù)列{bn}是單調(diào)遞減數(shù)列
B.數(shù)列{an+bn}是等比數(shù)列
C.數(shù)列 有最小值,無最大值
D.若△ABC中,C=90°,CA=CB,則 最小時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)向量 = =(﹣2,2), =(1,0)時(shí),執(zhí)行如圖所示的程序框圖,輸出的i值為(
A.5
B.4
C.3
D.2

查看答案和解析>>

同步練習(xí)冊答案