【題目】已知函數(shù).
(1)若在處的切線方程為,求實(shí)數(shù),的值:
(2)求證:當(dāng)時(shí),在上有兩個(gè)極值點(diǎn):
(3)設(shè),若在單調(diào)遞減,求實(shí)數(shù)的取值范圍.(其中為自然對(duì)數(shù)的底數(shù))
【答案】(1);.(2)見(jiàn)解析(3)
【解析】
(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),將橫坐標(biāo)帶入結(jié)合切線方程的斜率即可求得的值,進(jìn)而可得切點(diǎn)坐標(biāo),將切點(diǎn)坐標(biāo)代入切線方程即可得的值.
(2)令,再求得,由導(dǎo)函數(shù)與函數(shù)單調(diào)性關(guān)系可得的單調(diào)區(qū)間.由可得的最小值符號(hào),再由及零點(diǎn)存在定理可判斷在有一個(gè)零點(diǎn);表示出,并構(gòu)造函數(shù),由的符號(hào)可得的單調(diào)遞減區(qū)間,根據(jù)零點(diǎn)存在定理可知在有一個(gè)零點(diǎn),從而證明出結(jié)論.
(3)由題意可得的表達(dá)式,構(gòu)造函數(shù),并求得,再構(gòu)造函數(shù),并由的符號(hào)可判斷的單調(diào)情況,從而由的最值判斷出的符號(hào),即可得的單調(diào)情況.對(duì)分類(lèi)討論,從而由的符號(hào)得符合題意的的取值范圍.
(1)函數(shù).
則,
由條件知,所以,
,所以切點(diǎn)坐標(biāo)為.
把代入,
解得.
(2)證明:令,
則,所以在單調(diào)遞減,在單調(diào)遞增.
因?yàn)?/span>,所以.
又,所以在有一個(gè)零點(diǎn).
又,
令,則,
所以在單調(diào)遞減,故,
即,所以在有一個(gè)零點(diǎn).
于是可知:當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),
,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.
因此,在上有兩個(gè)極值點(diǎn)(在處取得極大值,在處取得極小值).
(3),
令,
則,
令,當(dāng)時(shí),,
單調(diào)遞增,,
所以,在單調(diào)遞增,
于是可得,
①若,則,,
因?yàn)?/span>在單調(diào)遞減,
所以
,
令,
當(dāng)時(shí),,
故單調(diào)遞減,所以,解得,
②若,則,
,
因?yàn)?/span>在單調(diào)遞減,所以,
當(dāng),時(shí),
,
所以,即,滿足題設(shè).
③若,則存在唯一確定的,使得.
當(dāng)時(shí),,即存在,,
但,這與在單調(diào)遞減矛盾,不合題意.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)寫(xiě)出曲線C1和C2的直角坐標(biāo)方程;
(2)已知P為曲線C2上的動(dòng)點(diǎn),過(guò)點(diǎn)P作曲線C1的切線,切點(diǎn)為A,求|PA|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中,,,點(diǎn),分別為棱,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)是原點(diǎn)O,以x軸為對(duì)稱(chēng)軸,且經(jīng)過(guò)點(diǎn)P(1,2).
(1)求拋物線C的方程;
設(shè)點(diǎn)A,B在拋物線C上,直線PA,PB分別與y軸交于點(diǎn)M,N,|PM|=|PN|.求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用代表紅球,代表藍(lán)球,代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由的展開(kāi)式表示出來(lái),如:“1”表示一個(gè)球都不取、“”表示取出一個(gè)紅球,而“”用表示把紅球和藍(lán)球都取出來(lái).以此類(lèi)推,下列各式中,其展開(kāi)式可用來(lái)表示從5個(gè)有區(qū)別的紅球、5個(gè)無(wú)區(qū)別的藍(lán)球、5個(gè)無(wú)區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在生活中,我們常看到各種各樣的簡(jiǎn)易遮陽(yáng)棚.現(xiàn)有直徑為的圓面,在圓周上選定一個(gè)點(diǎn)固定在水平的地面上,然后將圓面撐起,使得圓面與南北方向的某一直線平行,做成簡(jiǎn)易遮陽(yáng)棚.設(shè)正東方向射出的太陽(yáng)光線與地面成角,若要使所遮陰影面的面積最大,那么圓面與陰影面所成角的大小為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藥業(yè)公司統(tǒng)計(jì)了2010-2019年這10年某種疾病的患者人數(shù),結(jié)論如下:該疾病全國(guó)每年的患者人數(shù)都不低于100萬(wàn),其中有3年的患者人數(shù)低于200萬(wàn),有6年的患者人數(shù)不低于200萬(wàn)且低于300萬(wàn),有1年的患者人數(shù)不低于300萬(wàn).
(1)藥業(yè)公司為了解一新藥品對(duì)該疾病的療效,選擇了200名患者,隨機(jī)平均分為兩組作為實(shí)驗(yàn)組和對(duì)照組,實(shí)驗(yàn)結(jié)束時(shí),有顯著療效的共110人,實(shí)驗(yàn)組中有顯著療效的比率為70%.請(qǐng)完成如下的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99.9%把握認(rèn)為該藥品對(duì)該疾病有顯著療效;
實(shí)驗(yàn)組 | 對(duì)照組 | 合計(jì) | |
有顯著療效 | |||
無(wú)顯著療效 | |||
合計(jì) | 200 |
(2)藥業(yè)公司最多能引進(jìn)3條新藥品的生產(chǎn)線,據(jù)測(cè)算,公司按如下條件運(yùn)行生產(chǎn)線:
該疾病患者人數(shù)(單位:萬(wàn)) | |||
最多可運(yùn)行生產(chǎn)線數(shù) | 1 | 2 | 3 |
每運(yùn)行一條生產(chǎn)線,可產(chǎn)生年利潤(rùn)6000萬(wàn)元,沒(méi)運(yùn)行的生產(chǎn)線毎條每年要虧損1000萬(wàn)元.根據(jù)該藥業(yè)公司這10年的統(tǒng)計(jì)數(shù)據(jù),將患者人數(shù)在以上三段的頻率視為相應(yīng)段的概率、假設(shè)各年的患者人數(shù)相互獨(dú)立.欲使該藥業(yè)公司年總利潤(rùn)的期望值達(dá)到最大,應(yīng)引進(jìn)多少條生產(chǎn)線?
附:參考公式:,其中.
0.05 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com