【題目】已知函數(shù).
(Ⅰ)求的極值;
(Ⅱ)若函數(shù)的圖像與函數(shù)
的圖像在區(qū)間
上有公共點(diǎn),求實(shí)數(shù)
的取值范圍.
【答案】(1)極小值為,無極大值.(2)
【解析】試題分析:(Ⅰ)函數(shù)求導(dǎo),令,求出根,分析其兩側(cè)導(dǎo)數(shù)的符號(hào),確定函數(shù)的極值;(Ⅱ)若函數(shù)
的圖象與函數(shù)
的圖象在區(qū)間
上有公共點(diǎn),轉(zhuǎn)化為求函數(shù)
在區(qū)間
上的值域,根據(jù)(Ⅰ)分類討論函數(shù)在區(qū)間
是的單調(diào)性,確定函數(shù)
的最值.
試題解析:
(1)函數(shù)的定義域?yàn)?/span>
,
,令
,得
,
當(dāng)時(shí),
,
是減函數(shù);
當(dāng)時(shí),
,
是增函數(shù).
所以當(dāng)時(shí),
取得極小值,即極小值為
,無極大值.
(2)①當(dāng),即
時(shí),由(1)知,
在
上是減函數(shù),在
上增函數(shù),當(dāng)
時(shí),
取得最小值,即
最小值
,又當(dāng)
時(shí),
,當(dāng)
時(shí),
,當(dāng)
時(shí),
,所以
的圖像與函數(shù)
的圖像在區(qū)間
上有公共點(diǎn),等價(jià)于
,解得
,又
,所以
.
②當(dāng),即
時(shí),
在
上是減函數(shù),
在
上的最小值為
,所以,原問題等價(jià)于
,得
,又
,所以不存在這樣的實(shí)數(shù)
.綜上知實(shí)數(shù)
的取值范圍是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位職工義務(wù)獻(xiàn)血,在體檢合格的人中, 型血的共有28人,
型血的共有7人,
型血的共有9人,
型血的有3人.
(1)從中任選1人去獻(xiàn)血,有多少種不同的選法?
(2)從四種血型的人中各選1人去獻(xiàn)血,有多少種不同的選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上周某校高三年級學(xué)生參加了數(shù)學(xué)測試,年部組織任課教師對這次考試進(jìn)行成績分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);
(Ⅱ)假設(shè)抽出學(xué)生的數(shù)學(xué)成績在段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個(gè)數(shù)字中任意抽取2個(gè)數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績的次數(shù)為
,求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2015高考湖北】如圖,圓C與x軸相切于點(diǎn)T(1,0),與y軸正半軸交于兩點(diǎn)A,B(B在A的上方),且|AB|=2.
(1)圓C的標(biāo)準(zhǔn)方程為________.
(2)過點(diǎn)A任作一條直線與圓O:x2+y2=1相交于M,N兩點(diǎn),下列三個(gè)結(jié)論:
①=
;②
-
=2;
③+
=2
.
其中正確結(jié)論的序號(hào)是________(寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (x∈R),給出下面四個(gè)命題:
①函數(shù)f(x)的圖象一定關(guān)于某條直線對稱;
②函數(shù)f(x)在R上是周期函數(shù);
③函數(shù)f(x)的最大值為 ;
④對任意兩個(gè)不相等的實(shí)數(shù) ,都有
成立.
其中所有真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(
).
(Ⅰ)求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)當(dāng)時(shí),記
,是否存在整數(shù)
,使得關(guān)于
的不等式
有解?若存在,請求出
的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為
,已知
(p、q為常數(shù),
),又
,
,
.
(1)求p、q的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)是否存在正整數(shù)m、n,使成立?若存在,求出所有符合條件的有序?qū)崝?shù)對
;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,
分別是
的中點(diǎn).
(1)證明:平面平面
;
(2)棱上是否存在點(diǎn)
,使
平面
?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊
,斜邊
.現(xiàn)有甲、乙、丙三位小朋友分別在
大道上嬉戲,所在位置分別記為點(diǎn)
.
(1)若甲乙都以每分鐘的速度從點(diǎn)
出發(fā)在各自的大道上奔走,到大道的另一端
時(shí)即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時(shí)甲乙兩人之間的距離;
(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且
,請將甲
乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com