【題目】某單位職工義務(wù)獻(xiàn)血,在體檢合格的人中, 型血的共有28人, 型血的共有7人, 型血的共有9人, 型血的有3人.

(1)從中任選1人去獻(xiàn)血,有多少種不同的選法?

(2)從四種血型的人中各選1人去獻(xiàn)血,有多少種不同的選法?

【答案】(1)共有種不同的選法 (2)共有種不同的選法

【解析】試題分析:(1)由分類加法計(jì)數(shù)原理得共有種不同的選法;(2)由用分步乘法計(jì)數(shù)原理得共有種不同的選法.

試題解析:從型血的人中選1人有28種不同的選法.從型血的人中選1人有7種不同的選法,從型血的人中選1人有9種不同的選法,從型血的人中選1人有3種不同的選法.

(1)任選1人去獻(xiàn)血,即無論選擇哪種血型的哪一個(gè)人,這件“任選1人去獻(xiàn)血”的事情都能完成,所以由分類加法計(jì)數(shù)原理,共有種不同的選法.

(2)要從四種血型的人中各選1人,即要在每種血型的人中依次選出1人后,這件“各選1人去獻(xiàn)血”的事情才完成,所以用分步乘法計(jì)數(shù)原理,共有種不同的選法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)且斜率為1的直線交橢圓于另一點(diǎn),交軸于點(diǎn),

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于兩點(diǎn),連接為坐標(biāo)原點(diǎn))并延長交橢圓于點(diǎn),求面積的最大值及取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項(xiàng)費(fèi)用如表:

項(xiàng)目

生產(chǎn)成本

檢驗(yàn)費(fèi)/次

調(diào)試費(fèi)

出廠價(jià)

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi));

(Ⅲ)假設(shè)每臺儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)= (sinx+cosx+|sinx﹣cosx|)的值域是(
A.[﹣1,1]
B.[﹣ , ]
C.[﹣ ,1]
D.[﹣1, ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號之和不大于4的概率;
(2)先從袋中隨機(jī)取一個(gè)球,該球的編號為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號為n,求n<m+2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn)

(1)求橢圓的方程;

(2)已知、是橢圓上的兩點(diǎn), , 是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).①若直線的斜率為,求四邊形面積的最大值;

②當(dāng) 運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面

(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓 上一點(diǎn)軸作垂線,垂足為右焦點(diǎn), 、分別為橢圓的左頂點(diǎn)和上頂點(diǎn),且 .

(Ⅰ)求橢圓的方程;

(Ⅱ)若動(dòng)直線與橢圓交于兩點(diǎn),且以為直徑的圓恒過坐標(biāo)原點(diǎn).問是否存在一個(gè)定圓與動(dòng)直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的極值;

(Ⅱ)若函數(shù)的圖像與函數(shù)的圖像在區(qū)間上有公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案