【題目】冠狀病毒是一個(gè)大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見(jiàn)體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:

方式一:逐份檢驗(yàn),則需要檢驗(yàn).

方式二:混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起檢驗(yàn),若不是陽(yáng)性,檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為.

假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為.現(xiàn)取其中份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

1)若,試求關(guān)于的函數(shù)關(guān)系式

2)若與干擾素計(jì)量相關(guān),其中是不同的正實(shí)數(shù),滿(mǎn)足都有成立.

(。┣笞C:數(shù)列為等比數(shù)列;

(ⅱ)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求的最大值.

【答案】1;(2)(ⅰ)證明見(jiàn)解析;(ⅱ)的最大值為4.

【解析】

1)由隨機(jī)變量的概率公式和數(shù)學(xué)期望,計(jì)算可得所求函數(shù)的解析式;

2)(。┊(dāng)時(shí)可得,當(dāng)時(shí),可得兩式作差可得即可得證;

(ⅱ)運(yùn)用(。┑慕Y(jié)論和構(gòu)造函數(shù),求得導(dǎo)數(shù)和單調(diào)性,計(jì)算可得所求最大值.

解:(1)由已知可得,的所有取值為1,,,

,

,可得,即,即,即

可得,;

2)(。┳C明:當(dāng)時(shí),,即,由,得,

因?yàn)楫?dāng)時(shí),,

所以,

兩式相減得

,可得,因?yàn)?/span>,所以數(shù)列為等比數(shù)列,且

(ⅱ)由(。┛芍,可得,即,所以,設(shè),,,當(dāng)時(shí),,遞減,又,,則;

,,則,可得的最大值為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】干支紀(jì)年法是中國(guó)歷法上自古以來(lái)就一直使用的紀(jì)年方法、干支是天干和地支的總稱(chēng),甲、乙、丙、丁、戊、己、庚、辛、壬、癸為天干:子、丑、寅、卯、辰、已、午、未,申、西、戌、亥為地支.把十天干和十二地支依次相配,如甲對(duì)子、乙對(duì)丑、丙對(duì)寅、癸對(duì)寅,其中天干比地支少兩位,所以天干先循環(huán),甲對(duì)戊、乙對(duì)亥、接下來(lái)地支循環(huán),丙對(duì)子、丁對(duì)丑、.,以此用來(lái)紀(jì)年,今年2020年是庚子年,那么中華人民共和國(guó)建國(guó)100周年即2049年是(

A.戊辰年B.己巳年C.庚午年D.庚子年

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公交公司分別推出支付寶和微信掃碼支付乘車(chē)活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付.某線(xiàn)路公交車(chē)隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表1所示:

1

1

2

3

4

5

6

7

6

11

21

34

66

101

196

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由).

2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次.

3)推廣期結(jié)束后,為更好的服務(wù)乘客,車(chē)隊(duì)隨機(jī)調(diào)查了100人次的乘車(chē)支付方式,得到如下結(jié)果:

2

支付方式

現(xiàn)金

乘車(chē)卡

掃碼

人次

10

60

30

已知該線(xiàn)路公交車(chē)票價(jià)2元,使用現(xiàn)金支付的乘客無(wú)優(yōu)惠,使用乘車(chē)卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)調(diào)査結(jié)果發(fā)現(xiàn):使用掃碼支付的乘客中有5名乘客享受7折優(yōu)惠,有10名乘客享受8折優(yōu)惠,有15名乘客享受9折優(yōu)惠.預(yù)計(jì)該車(chē)隊(duì)每輛車(chē)每個(gè)月有1萬(wàn)人次乘車(chē),根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其他因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),試估計(jì)該車(chē)隊(duì)一輛車(chē)一年的總收入.

參考數(shù)據(jù):

62.14

1.54

2535

50.12

3.47

其中.

參考公式:

對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且函數(shù)為偶函數(shù),當(dāng)時(shí),,若有三個(gè)零點(diǎn),則實(shí)數(shù)的取值集合是(

A.,B.

C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,將曲線(xiàn)繞極點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到曲線(xiàn).

(Ⅰ)求曲線(xiàn)的極坐標(biāo)方程;

(Ⅱ)若直線(xiàn),分別相交于異于極點(diǎn)的兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)組織“學(xué)習(xí)強(qiáng)國(guó)”的知識(shí)競(jìng)賽,從參加競(jìng)賽的市民中抽出40人,將其成績(jī)分成以下6組:第1,第2,第3,第4,第5,第6,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第23,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為(

A.1,34B.2,33C.2,2,4D.1,1,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】半正多面體亦稱(chēng)“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面組成的多面體.如將正四面體所有棱各三等分,沿三等分點(diǎn)從原幾何體割去四個(gè)小正四面體如圖所示,余下的多面體就成為一個(gè)半正多面體,若這個(gè)半正多面體的棱長(zhǎng)為2,則這個(gè)半正多面體的體積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)設(shè)計(jì)一項(xiàng)綜合學(xué)科的考查方案:考生從6道備選題中一次性隨機(jī)抽取三道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作,已知在6道備選題中,考生甲有4道題能正確完成,兩道題不能正確完成;考生乙每道題正確完成的概率都是,且每道題正確完成與否互不影響.

1)分別寫(xiě)出甲、乙兩考生正確完成題數(shù)的概率分布列;

2)分別求甲、乙兩考生正確完成題數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,焦距為.斜率為的直線(xiàn)與橢圓有兩個(gè)不同的交點(diǎn)

1)求橢圓的方程;

2)設(shè),直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為.若,和點(diǎn)共線(xiàn),求

查看答案和解析>>

同步練習(xí)冊(cè)答案