【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

單價(jià)(元)

4

6

7

8

10

銷量(件)

60

50

45

30

20

(1) 請(qǐng)根據(jù)上表提供的數(shù)據(jù)畫(huà)出散點(diǎn)圖,并判斷是正相關(guān)還是負(fù)相關(guān);

(2) 求出關(guān)于的回歸直線方程,若單價(jià)為9元時(shí),預(yù)測(cè)其銷量為多少?

(參考公式:回歸直線方程中公式 ,

【答案】1)見(jiàn)解析;(2 ,若單價(jià)為9元時(shí),預(yù)測(cè)其銷量為27件.

【解析】

(1)結(jié)合所給的數(shù)據(jù)繪制散點(diǎn)圖,觀察可得銷量與單價(jià)成負(fù)相關(guān);

(2)結(jié)合所給的數(shù)據(jù)計(jì)算可得線性回歸方程為;結(jié)合回歸方程,時(shí),可得估計(jì)的值.

1

由散點(diǎn)圖可知銷量與單價(jià)成負(fù)相關(guān).

(2),

,,

因此回歸直線方程為.

時(shí),估計(jì)的值為.

單價(jià)為9元時(shí),預(yù)測(cè)其銷量為27件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個(gè)命題:

①三棱錐的體積為定值;

②經(jīng)過(guò)四點(diǎn)的球的直徑為;

③直線∥平面;

④直線所成的角為;

其中真命題的個(gè)數(shù)是(。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,點(diǎn)在橢圓.

求橢圓的方程;

已知為平面內(nèi)的兩個(gè)定點(diǎn),過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若對(duì)任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱回歸數(shù)列

項(xiàng)和為的數(shù)列是否是回歸數(shù)列?并請(qǐng)說(shuō)明理由.通項(xiàng)公式為的數(shù)列是否是回歸數(shù)列?并請(qǐng)說(shuō)明理由;

)設(shè)是等差數(shù)列,首項(xiàng),公差,若回歸數(shù)列,求的值.

)是否對(duì)任意的等差數(shù)列,總存在兩個(gè)回歸數(shù)列,使得成立,請(qǐng)給出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生產(chǎn)企業(yè)對(duì)其所生產(chǎn)的甲、乙兩種產(chǎn)品進(jìn)行質(zhì)量檢測(cè),分別各抽查6件產(chǎn)品,檢測(cè)其重量的誤差,測(cè)得數(shù)據(jù)如下(單位:):

甲:13 15 13 8 14 21

乙:15 13 9 8 16 23

(1)畫(huà)出樣本數(shù)據(jù)的莖葉圖;

(2)分別計(jì)算甲、乙兩組數(shù)據(jù)的方差并分析甲、乙兩種產(chǎn)品的質(zhì)量(精確到0.1)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十八大以來(lái),我國(guó)精準(zhǔn)扶貧已經(jīng)實(shí)施了六年,我國(guó)貧困人口從2012年的9899萬(wàn)人,減少到2018年的1660萬(wàn)人,2019年將努力實(shí)現(xiàn)減少貧困人口1000萬(wàn)人以上的目標(biāo),力爭(zhēng)2020年在現(xiàn)行標(biāo)準(zhǔn)下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當(dāng)前扶貧領(lǐng)域存在的突出問(wèn)題,市扶貧辦近三年來(lái),每半年對(duì)貧困戶(用表示,單位:萬(wàn)戶)進(jìn)行取樣,統(tǒng)計(jì)結(jié)果如圖所示,從20166月底到20196月底的共進(jìn)行了七次統(tǒng)計(jì),統(tǒng)計(jì)時(shí)間用序號(hào)表示,例如:201612月底(時(shí)間序號(hào)為2)貧困戶為5.2萬(wàn)戶.

(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)到202012月底,該市能否實(shí)現(xiàn)貧困戶全部脫貧;

(2)為盡快打贏脫貧攻堅(jiān)戰(zhàn),該市扶貧辦在20196月底時(shí),對(duì)全市貧困戶隨機(jī)抽取了100戶貧困戶,對(duì)每個(gè)家庭最主要經(jīng)濟(jì)收入來(lái)源進(jìn)行抽樣調(diào)查,統(tǒng)計(jì)結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對(duì)全市所有貧困戶中,家庭最主要經(jīng)濟(jì)收入來(lái)源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對(duì)口幫扶,每一名農(nóng)業(yè)技術(shù)人員對(duì)口幫扶貧困戶90戶,則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對(duì)家庭最主要經(jīng)濟(jì)收入來(lái)源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對(duì)口幫扶?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,上一點(diǎn).

(1)若平面,試說(shuō)明點(diǎn)的位置并證明的結(jié)論;

(2)若的中點(diǎn),平面,且,

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線,,則下面結(jié)論正確的是(

A.上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B.上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

C.上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

D.上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:

數(shù)據(jù)表明之間有較強(qiáng)的線性關(guān)系.

(1)求關(guān)于的線性回歸方程;

(2)該班一名同學(xué)的數(shù)學(xué)成績(jī)?yōu)?10分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績(jī);

(3)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到125分為優(yōu)秀,物理成績(jī)達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):回歸直線的系數(shù),.

.

查看答案和解析>>

同步練習(xí)冊(cè)答案