在△ABC中,若
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)在上述△ABC中,若角C的對(duì)邊,求該三角形內(nèi)切圓半徑的取值范圍。

(Ⅰ)直角三角形;(Ⅱ)

解析試題分析:(Ⅰ)先利用正弦定理和余弦定理把條件中關(guān)于角的等式轉(zhuǎn)化為關(guān)于邊的等式,再整理化簡(jiǎn),通過(guò)最終的等式可以判斷三角形的形狀.
(Ⅱ)利用(Ⅰ)的結(jié)果和切線的性質(zhì)把內(nèi)切圓的半徑用三角形的三條邊表示出來(lái),再把三角邊轉(zhuǎn)化為角的形式,從而把問(wèn)題轉(zhuǎn)化求三角函數(shù)的值域問(wèn)題.
試題分析:(Ⅰ)根據(jù)正弦定理,原式可化為:,
再由余弦定理,上式可化為: ,
 
消去整理得:,所以 即△ABC為直角三角形.
(Ⅱ)如圖,中,,的內(nèi)切圓分別與邊相切與點(diǎn)

由切線長(zhǎng)定理知: 
 
 四邊形中, 
四邊形為正方形, 
的半徑 
若設(shè)內(nèi)切圓半徑為,則 .
,

 
 
考點(diǎn):1.正弦定理和余弦定理的應(yīng)用;2.直角三角形內(nèi)切圓的性質(zhì);3.三角恒等變換;4.三角函數(shù)的值域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中,內(nèi)角的對(duì)邊的邊長(zhǎng)為,且
(1)求角的大小;
(2)若,,求出的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,,(,且為常數(shù)),設(shè)函數(shù),若的最大值為1.
(1)求的值,并求的單調(diào)遞增區(qū)間;
(2)在中,角、的對(duì)邊、、,若,且,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,內(nèi)角的對(duì)邊分別為,并且.
(1)求角的大�。�
(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的對(duì)邊,
(1)求;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的最小值和最大值
(2)設(shè)三角形角的對(duì)邊分別為,,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角所對(duì)的邊分別是,已知.
(Ⅰ)求;
(Ⅱ)若,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)的內(nèi)角、的對(duì)邊分別為、、,且滿足
(1)求角的大�。�
(2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹