設(shè)n=
π
2
0
(4sinx+cosx)dx,則二項式(x-
1
x
n的展開式中x的系數(shù)為( 。
A、4B、10C、5D、6
考點:二項式系數(shù)的性質(zhì),定積分
專題:二項式定理
分析:在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得展開式中x的系數(shù).
解答: 解:n=
π
2
0
(4sinx+cosx)dx=(-4cosx+sinx)
|
π
2
0
=5,
則二項式(x-
1
x
n=(x-
1
x
5 的展開式的通項公式為Tr+1=
C
r
5
•(-1)r•x5-2r,
令5-2r=1,求得r=2,∴展開式中x的系數(shù)為
C
2
5
=10,
故選:B.
點評:本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若f(x)=sin(2x+φ)+
3
cos(2x+φ)(0<φ<π)是R上的偶函數(shù),則φ=( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊的長分別為a,b,c,A=60°,C=45°,a=30,則c等于( 。
A、15
2
B、30
2
C、10
6
D、15
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復(fù)數(shù)z1,z2在復(fù)平面上對應(yīng)的點分別是A(1,2),B(-1,3),則
z1
z2
=( 。
A、1+i
B、i
C、
1-i
2
D、-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
A、命題p:存在x0∈R,使得x02+x0+1<0,則¬p:任意x∈R,都有x2+x+1>0
B、在△ABC中,“sinA>sinB”是“A>B”的充要條件
C、若
a
b
=
a
c
,則
b
=
c
D、命題“若x2-2x=0,則x=2”的否命題是“若x2-2x=0,則x≠2”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖(算法流程圖),輸出的T的值是( 。
A、82B、83
C、82或83D、81

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的個數(shù)是
①“在△ABC中,若sinA>sinB,則A>B”的逆命題是真命題;
②“m=-1”是“直線mx+(2m-1)y+1=0和直線3x+my+2=0垂直”的充要條件;
③“三個數(shù)a,b,c成等比數(shù)列”是“b=
ac
”的既不充分也不必要條件;
④命題“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x03-x03+1>0”(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式-2x2+x+3<0的解集是( 。
A、{x|x<-1}
B、{x|x>
3
2
}
C、{x|x-1<x<
3
2
}
D、{x|x<-1或x>
3
2
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若2x+y=2,則32x+3y的最小值為
 

查看答案和解析>>

同步練習冊答案