不等式-2x2+x+3<0的解集是(  )
A、{x|x<-1}
B、{x|x>
3
2
}
C、{x|x-1<x<
3
2
}
D、{x|x<-1或x>
3
2
}
考點(diǎn):一元二次不等式的解法
專(zhuān)題:不等式的解法及應(yīng)用
分析:按照解一元二次不等式的基本步驟解答,即可得出正確的答案.
解答: 解:不等式-2x2+x+3<0可化為
2x2-x-3>0,
即(2x-3)(x+1)>0;
解得x<-1,或x
3
2

∴不等式的解集是{x|x<-1,或x>
3
2
}.
故選:D.
點(diǎn)評(píng):本題考查了一元二次不等式的求解問(wèn)題,解題時(shí)應(yīng)按照解一元二次不等式的基本步驟解答即可,基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1001101(2)與下列哪個(gè)值相等( 。
A、125(7)
B、136(6)
C、177(5)
D、115(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)n=
π
2
0
(4sinx+cosx)dx,則二項(xiàng)式(x-
1
x
n的展開(kāi)式中x的系數(shù)為( 。
A、4B、10C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=1-2i(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( 。
A、-2B、2C、-2iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=
2
-1-i
(i為虛數(shù)單位),z的共軛復(fù)數(shù)為
.
z
,則在復(fù)平面內(nèi)i
.
z
對(duì)應(yīng)當(dāng)點(diǎn)的坐標(biāo)為( 。
A、(1,1)
B、(-1,1)
C、(1,-1)
D、(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,其中a2=6,且
an+1+an-1
an+1-an+1
=n.
(1)求a1,a3,a4;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校為調(diào)查高一新生上學(xué)路程所需要的時(shí)間(單位:分鐘),從高一年級(jí)新生中隨機(jī)抽取100名新生按上學(xué)所需時(shí)間分組:第1組(0,10],第2組(10,20],第3組(20,30],第4組(30,40],第5組(40,50],得到的頻率分布直方圖如圖所示.
(Ⅰ)根據(jù)圖中數(shù)據(jù)求a的值;
(Ⅱ)若從第3,4,5組中用分層抽樣的方法抽取6名新生參與交通安全問(wèn)卷調(diào)查,應(yīng)從第3,4,5組各抽取多少名新生?
(Ⅲ)在(Ⅱ)的條件下,該校決定從這6名新生中隨機(jī)抽取2名新生參加交通安全宣傳活動(dòng),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
sin(2x+
π
4
).
(1)求它的振幅、周期、初相;
(2)在所給坐標(biāo)系中用五點(diǎn)法作出它在區(qū)間[
π
8
8
]上的圖象.
(3)說(shuō)明y=sinx的圖象可由y=
2
sin(2x+
π
4
)的圖象經(jīng)過(guò)怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在單位圓中,
(1)證明兩角差的余弦公式Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;并由Cα-β推導(dǎo)兩角差的正弦公式Sα-β:sin(α-β).
(2)計(jì)算:sin15°的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案