已知向量
m
=(2,1),
n
=(1-b,a)(a>0,b>0).若
m
n
,則
1
a
+
2
b
的最小值為
 
考點(diǎn):基本不等式,平面向量共線(平行)的坐標(biāo)表示
專題:不等式的解法及應(yīng)用
分析:直接利用向量的平行關(guān)系,得到ab的關(guān)系,利用基本不等式求出ab的最大值.
解答: 解:向量
m
=(2,1),
n
=(1-b,a)(a>0,b>0).
因?yàn)?span id="9mx9kmo" class="MathJye">
m
n
,
所以2a=1-b,
即2a+b=1,
1
a
+
2
b
=(
1
a
+
2
b
)(2a+b)=4+
b
a
+
4a
b
≥8,
當(dāng)且僅當(dāng)2a=b時(shí)取等號.
所以ab的最小值為:8.
故答案為:8.
點(diǎn)評:本題考查基本不等式的應(yīng)用,向量的平行,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-a|+3x,當(dāng)a=1時(shí),求不等式f(x)≥3x+2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列結(jié)論中:
①若不等式f(x)>0的解集為(-∞,m)∪(n,+∞),則f(m)=f(n)=0;
②命題x,y∈R,若x2+y2=0,則x=0或y=0的否命題是假命題;
③在△ABC中,A>B的充要條件是sinA>sinB;
④若非零向量
a
,
b
,
c
兩兩成的夾角均相等,則夾角的大小為120°;
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=f(x)是函數(shù)y=2x-1的反函數(shù),則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax2+(a2-1)x-3a為偶函數(shù),其定義域?yàn)閇4a+2,a2+1],則f(x)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的外接球的表面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行四邊形ABCD中,已知AB=4,AD=3,∠BAD=60°,點(diǎn)E,F(xiàn)分別滿足
AE
=2
ED
,
DF
=
FC
,則
AF
BE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x),滿足f(x+2)-f(x)=0,若0<x<1時(shí)f(x)=2x,則f(log2
1
48
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個(gè)不同的平面α,β,γ和兩條不重合的直線m,n,有下列4個(gè)命題:
①若m∥α,α∩β=n,則m∥n;
②若m⊥α,m∥n,n?β,則α⊥β;
③若α⊥β,γ⊥β,則α∥γ;
④若α∩β=m,m⊥γ,則α⊥γ.
其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案