已知a>b>1,P=
lgalgb
,Q=
1
2
(lga+lgb),R=lg
a+b
2
,比較P、Q、R的大。
考點(diǎn):不等式比較大小
專(zhuān)題:不等式的解法及應(yīng)用
分析:根據(jù)基本不等式
a+b
2
ab
,進(jìn)行解答即可.
解答: 解:∵a>b>1,∴l(xiāng)ga>lgb>0,
a+b
2
ab

∴l(xiāng)g(
a+b
2
)>lg
ab
=
1
2
lg(ab)=
1
2
(lga+lgb),
∴R>Q;
又∵
1
2
(lga+lgb)>
lga•lgb

∴Q>P;
綜上,P<Q<R.
點(diǎn)評(píng):本題考查了基本不等式的性質(zhì)的應(yīng)用問(wèn)題,解題時(shí)應(yīng)注意基本不等式的應(yīng)用條件是什么.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知如圖所示的多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的正方形,DE⊥平面ABCD,BF∥DE,且BF=2DE=4.
(1)求多面體ABCDEF的體積;
(2)在棱長(zhǎng)FC上是否存在一點(diǎn)P,使EP∥ABCD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=2+
2
2
t
y=1+
2
2
t
(t為參數(shù)),在極坐標(biāo)系(以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系)中,曲線C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ

(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C與直線l交于A、B兩點(diǎn),若點(diǎn)P的坐標(biāo)為(2,1),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以原點(diǎn)O為點(diǎn)A(2
3
,-2)為頂點(diǎn)作一個(gè)等邊△OAB,求點(diǎn)B的坐標(biāo)及
AB
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=4x-2x+1-3的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
9
-
y2
16
=1,其右焦點(diǎn)為F,P其上一點(diǎn),點(diǎn)M滿(mǎn)足|
.
MF
|=1,
.
MF
MP
=0,則|
MP
|
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)生參加北京某大學(xué)的自主招生考試,須依次參加A、B、C、D四項(xiàng)測(cè)試.如果前三項(xiàng)測(cè)試中有兩項(xiàng)不合格或第四項(xiàng)不合格,則該考生被淘汰,學(xué)生被淘汰或參加完四次測(cè)試考試即結(jié)束.考生未被淘汰時(shí),必須參加下面的考試,已知每項(xiàng)考試相互獨(dú)立,A、B、C三項(xiàng)考試每項(xiàng)不合格的概率均為
1
3
,第四項(xiàng)考試不合格的概率為
1
4

(Ⅰ)求恰好在第三項(xiàng)測(cè)試結(jié)束時(shí)能確定該生被淘汰的概率;
(Ⅱ)求該生被錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)到直線y=-
3
2
和點(diǎn)(0,2)距離之比為1
(1)求點(diǎn)的軌跡方程;
(2)直線l 垂直于曲線9x2-16y2=1的漸近線,直線所在的函數(shù)有f′(x)>0,且經(jīng)過(guò)點(diǎn)(4,0)求:軌跡上的點(diǎn)到直線l 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車(chē)床的走刀量(單位:mm/r)共有如下13級(jí):0.3,0.33,0.35,0.40,0.45,0.48,0.50,0.55,0.60,0.65,0.71,0.81,0.91.那么第一次和第二次的試點(diǎn)分別為
 
、
 

查看答案和解析>>

同步練習(xí)冊(cè)答案