函數(shù)y=4x-2x+1-3的值域是
 
考點(diǎn):函數(shù)的值域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,化簡(jiǎn)y=4x-2x+1-3=(2x2-2•2x-3=(2x-1)2-4,從而求函數(shù)的值域.
解答: 解:y=4x-2x+1-3=(2x2-2•2x-3=(2x-1)2-4,
∵2x-1>-1;
∴(2x-1)2≥0;
故y≥-4;
故函數(shù)y=4x-2x+1-3的值域是[-4,+∞);
故答案為:[-4,+∞).
點(diǎn)評(píng):本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(
3
x+
1
3x
n(n∈N*)展開式中含有常數(shù)項(xiàng),則n的最小值是( 。
A、4B、3C、12D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三次函數(shù)f(x)=x3-
3
2
ax2+b(a,b∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處切線斜率為-1,且f(x)在區(qū)間[-1,1]上最大值為-1,求函數(shù)f(x)的解析式;
(2)若a>0,解關(guān)于x的不等式f′(x)>3x2+
1
x
-(a+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
1
3
ax3+x恰有三個(gè)單調(diào)區(qū)間,確定a的取值范圍,求其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b為實(shí)數(shù),且b=
a2-1
+
1-a2
+a
a+1
,求-
a+b-3
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>b>1,P=
lgalgb
,Q=
1
2
(lga+lgb),R=lg
a+b
2
,比較P、Q、R的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足an+1+(-1)nan=n,則{an}的前60項(xiàng)和等于(  )
A、960B、1920
C、930D、1860

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=
1-x
1+x
的反函數(shù)為f-1(x),函數(shù)g(x)與f(x+1)的圖象關(guān)于直線y=x對(duì)稱,那么g(2)的值為( 。
A、-2
B、-1
C、-
1
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=
a+2
2x+1
(x∈R).
(1)判斷f(x)在R上的單調(diào)性用定義證明;
(2)在a=1的條件下,解不等式f(2t+1)≤f(t-5).

查看答案和解析>>

同步練習(xí)冊(cè)答案