【題目】已知向量 與向量 的夾角為θ,且| |=1,| |= .
(1)若 ∥ ,求 ;
(2)若 ﹣ 與 垂直,求θ.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin( ﹣x)sinx﹣ cos2x. (I)求f(x)的最小正周期和最大值;
(II)討論f(x)在[ , ]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABC的邊長為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點,,,.
(1)當(dāng)時,求的大;
(2)求的面積S的最小值及使得S取最小值時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點,且PA=AB=AC=2,BC=2 .
(1)求證:CD⊥平面PAC;
(2)如果如果N是棱AB上一點,且直線CN與平面MAB所成角的正弦值為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電影院共有1000個座位,票價不分等次,根據(jù)電影院的經(jīng)營經(jīng)驗,當(dāng)每張票價不超過10元時,票可全部售出;當(dāng)票價高于10元時,每提高1元,將有30張票不能售出.為了獲得更好的收益,需要給電影院一個合適的票價,基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放映一場電影的成本是5750元,票房收入必須高于成本.用x(元)表示每張票價,用y(元)表示該電影放映一場的純收入(除去成本后的收入). (Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)票價定為多少時,電影放映一場的純收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的一個焦點與拋物線 的焦點F重合,且橢圓短軸的兩個端點與F構(gòu)成正三角形.
(1)求橢圓的方程;
(2)若過點(1,0)的直線l與橢圓交于不同兩點P、Q,試問在x軸上是否存在定點E(m,0),使 恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對任意x∈(﹣ , )恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)的定義域為(﹣a,0)∪(0,a)(0<a<1),其圖象上任意一點P(x,y)滿足x2+y2=1,則給出以下四個命題:①函數(shù)y=f(x)一定是偶函數(shù);②函數(shù)y=f(x)可能是奇函數(shù);③函數(shù)y=f(x)在(0,a)上單調(diào)遞增④若函數(shù)y=f(x)是偶函數(shù),則其值域為(a2 , 1)其中正確的命題個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com