【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相.某大型超市進行扶貧工作,按計劃每年六月從精準扶貧戶中訂購荔枝,每天進貨量相同且每公斤20元,售價為每公斤24元,未售完的荔枝降價處理,以每公斤16元的價格當天全部處理完.根據(jù)往年情況,每天需求量與當天平均氣溫有關(guān).如果平均氣溫不低于25攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫低于15攝氏度,需求量為公斤.為了確定6月1日到30日的訂購數(shù)量,統(tǒng)計了前三年6月1日到30日各天的平均氣溫數(shù)據(jù),得到如圖所示的頻數(shù)分布表:
平均氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
(Ⅰ)假設該商場在這90天內(nèi)每天進貨100公斤,求這90天荔枝每天為該商場帶來的平均利潤(結(jié)果取整數(shù));
(Ⅱ)若該商場每天進貨量為200公斤,以這90天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天該商場不虧損的概率.
【答案】(1)391(2)
【解析】試題分析:(Ⅰ)由題意,根據(jù)頻數(shù)分析布表,這90天中平均氣溫在15攝氏度以上時,共有98天,且每天進貨為公斤,銷量亦為100公斤,此時每天利潤為元,而平均氣溫低于15攝氏度的有2天,但進貨仍為100公斤,而銷量為50公斤,此時每天利潤為,從而可求出這90天的平均利潤;(Ⅱ)若這90天每天進貨200公斤時,由頻數(shù)分布表知,當平均氣溫在25攝氏度以上有36天,且銷量為300公斤,此時盈利,當平均氣溫在15至25攝氏度之間時有52天,且銷量為100公斤,此時利潤為0,不虧,當平均氣溫在15攝氏度以下時有2天,且銷量為50公斤,此時利潤 為元,虧損,從而可得當天商場不虧損的概率為.
試題解析:(Ⅰ)當需求量時,荔枝為該商場帶來的利潤為元;
當需求量,即時,荔枝為該商場帶來的利潤為元.
∴這90天荔枝每天為該商場帶來的平均利潤為元.
(Ⅱ)當需求量時,荔枝為該商場帶來的利潤為元;
當需求量時,荔枝為該商場帶來的利潤為元;
當需求量時,荔枝為該商場帶來的利潤為元;
∴當天該商場不虧損,則當天荔枝的需求量為100、200或300公斤,
則所求概率.
科目:高中數(shù)學 來源: 題型:
【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設施,讓廣大居民健康生活、積極向上.社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計數(shù)據(jù)如表:(為了便于計算,把2015年簡記為5,其余以此類推)
年份(年) | 5 | 6 | 7 | 8 |
投資金額(萬元) | 15 | 17 | 21 | 27 |
(1)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;
(2)預測該社區(qū)在2019年在“文化丹青”上的投資金額.
(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為, .)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用0, 1, 2, 3, 4, 5這六個數(shù)字, 可以組成______個無重復數(shù)字的三位數(shù), 也可以組成______個能被5整除且無重復數(shù)字的五位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】口袋中有100個大小相同的紅球、白球、黑球,其中紅球45個,從口袋中摸出一個球,摸出白球的概率為0.23,則摸出黑球的概率為( )
A.0.45B.0.67
C.0.64D.0.32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動點P,過P引平行于OB的直線和OA交于點C,設∠AOP=θ,求△POC面積的最大值及此時θ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】Monte-Carlo方法在解決數(shù)學問題中有廣泛的應用.下面利用Monte-Carlo方法來估算定積分.考慮到等于由曲線,軸,直線所圍成的區(qū)域的面積,如圖,在外作一個邊長為1正方形OABC.在正方形OABC內(nèi)隨機投擲n個點,若n個點中有m個點落入M中,則M的面積的估計值為,此即為定積分的估計值.現(xiàn)向正方形OABC中隨機投擲10000個點,以X表示落入M中的點的數(shù)目.
(1)求X的期望和方差;
(2)求用以上方法估算定積分時,的估計值與實際值之差在區(qū)間(-0.01,0.01)的概率.
附表:
1899 | 1900 | 1901 | 2099 | 2100 | 2101 | |
0.0058 | 0.0062 | 0.0067 | 0.9933 | 0.9938 | 0.9942 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率,過點、分別作兩平行直線、, 與橢圓相交于、兩點, 與橢圓相交于、兩點,且當直線過右焦點和上頂點時,四邊形的面積為.
(1)求橢圓的標準方程;
(2)若四邊形是菱形,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓Γ: 的右焦點為F,過點F且斜率為k的直線與橢圓Γ交于A(x1, y1)、B(x2, y2)兩點(點A在x軸上方),點A關(guān)于坐標原點的對稱點為P,直線PA、PB分別交直線l:x=4于M、N兩點,記M、N兩點的縱坐標分別為yM、yN.
(1) 求直線PB的斜率(用k表示);
(2) 求點M、N的縱坐標yM、yN (用x1, y1表示) ,并判斷yM yN是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com