【題目】已知函數(shù).

(I) 極大值;

(II) 求證:,其中,

(III)若方程有兩個(gè)不同的根, 求證:

【答案】)極大值是(II)見解析(III)見解析

【解析】

(Ⅰ)對(duì)函數(shù)進(jìn)行求導(dǎo),讓導(dǎo)函數(shù)為零,求出根,列表,判斷極值情況,最后求出極大值;

(II) 法一:根據(jù)(Ⅰ)可以得到函數(shù)的最大值,結(jié)合求證的式子左右兩邊形式,能得到一個(gè)不等式, 然后累和,命題得證;

法二:有關(guān)正整數(shù)的命題,可以采用數(shù)學(xué)歸納法來證明。

(III)由(Ⅰ)可知,方程有兩個(gè)不同的零點(diǎn),能得到 用分析法證明時(shí),需要構(gòu)造一個(gè)新函數(shù),利用新函數(shù)的單調(diào)性,證明分析法需要證明的不等式成立。

解:(Ⅰ), 解得

遞增

極大值

遞減

極大值是

(II) 法一:,

由(Ⅰ)得:處取得極大值1,且該極值是唯一的,

,即,當(dāng)且僅當(dāng)時(shí)取“=”,

故當(dāng)時(shí),,

因此

法二:下面用數(shù)學(xué)歸納法證明:,對(duì)恒成立.

(1)當(dāng)時(shí),左邊,右邊

左邊右邊,結(jié)論成立;

(2)假設(shè)當(dāng)時(shí),結(jié)論成立,即,

當(dāng)時(shí),左邊

,

由(Ⅰ)得:處取得極大值1,且該極值是唯一的,

,即,當(dāng)且僅當(dāng)時(shí)取“=”,

對(duì)恒成立,即

成立

故當(dāng)時(shí),結(jié)論成立,

因此,綜合(1)(2)得,對(duì)恒成立

(III) 由(Ⅰ)知方程有兩個(gè)不同的零點(diǎn),

分析法: 要證

令函數(shù),

上遞增,

成立, 由上知成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,分別是橢圓的左、右頂點(diǎn)(如圖所示),點(diǎn)在橢圓的長(zhǎng)軸上運(yùn)動(dòng),且.設(shè)圓是以點(diǎn)為圓心,為半徑的圓.

(1)若,圓和橢圓在第一象限的交點(diǎn)坐標(biāo)為,求橢圓的方程;

(2)若橢圓的離心率為,過點(diǎn)作互相垂直的兩條直線,交橢圓于P,Q兩點(diǎn),若直線PQ過點(diǎn)M,求m的值(用含的代數(shù)式表示);

(3)當(dāng)圓與橢圓有且僅有點(diǎn)一個(gè)交點(diǎn)時(shí),求的運(yùn)動(dòng)范圍(用含的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;

2)當(dāng)時(shí),

若對(duì)于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)e為自然對(duì)數(shù)的底數(shù))

1)求的最小值;

2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明家的晚報(bào)在下午任何一個(gè)時(shí)間隨機(jī)地被送到,他們一家人在下午任何一個(gè)時(shí)間隨機(jī)地開始晚餐.為了計(jì)算晚報(bào)在晚餐開始之前被送到的概率,某小組借助隨機(jī)數(shù)表的模擬方法來計(jì)算概率,他們的具體做法是將每個(gè)1分鐘的時(shí)間段看作個(gè)體進(jìn)行編號(hào),編號(hào)為01,編號(hào)為02,依此類推,編號(hào)為90.在隨機(jī)數(shù)表中每次選取一個(gè)四位數(shù),前兩位表示晚報(bào)時(shí)間,后兩位表示晚餐時(shí)間,如果讀取的四位數(shù)表示的晚報(bào)晚餐時(shí)間有一個(gè)不符合實(shí)際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個(gè)四位數(shù)7840中的78不符合晚報(bào)時(shí)間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計(jì)晚報(bào)在晚餐開始之前被送到的概率為  

7840 1160 5054 3139 8082 7732 5034 3682 4829 4052

4201 6277 5678 5188 6854 0200 8650 7584 0136 7655

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, ,,則對(duì)此不等式描敘正

確的是( )

A. ,至少存在一個(gè)以為邊長(zhǎng)的等邊三角形

B. ,則對(duì)任意滿足不等式的都存在為邊長(zhǎng)的三角形

C. ,則對(duì)任意滿足不等式的都存在為邊長(zhǎng)的三角形

D. ,則對(duì)滿足不等式的不存在為邊長(zhǎng)的直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相.某大型超市進(jìn)行扶貧工作,按計(jì)劃每年六月從精準(zhǔn)扶貧戶中訂購荔枝,每天進(jìn)貨量相同且每公斤20元,售價(jià)為每公斤24元,未售完的荔枝降價(jià)處理,以每公斤16元的價(jià)格當(dāng)天全部處理完.根據(jù)往年情況,每天需求量與當(dāng)天平均氣溫有關(guān).如果平均氣溫不低于25攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫低于15攝氏度,需求量為公斤.為了確定6月1日到30日的訂購數(shù)量,統(tǒng)計(jì)了前三年6月1日到30日各天的平均氣溫?cái)?shù)據(jù),得到如圖所示的頻數(shù)分布表:

平均氣溫

天數(shù)

2

16

36

25

7

4

(Ⅰ)假設(shè)該商場(chǎng)在這90天內(nèi)每天進(jìn)貨100公斤,求這90天荔枝每天為該商場(chǎng)帶來的平均利潤(rùn)(結(jié)果取整數(shù));

(Ⅱ)若該商場(chǎng)每天進(jìn)貨量為200公斤,以這90天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天該商場(chǎng)不虧損的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:;

(3)求證:對(duì)任意的,都有:,(其中為自然對(duì)數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn). 為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).

⑴求橢圓的標(biāo)準(zhǔn)方程;

⑵若,求的值;

⑶設(shè)直線, 的斜率分別為, ,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案