【題目】已知橢圓Γ 的右焦點為F,過點F且斜率為k的直線與橢圓Γ交于A(x1, y1)B(x2, y2)兩點(Ax軸上方),點A關(guān)于坐標原點的對稱點為P,直線PA、PB分別交直線lx=4M、N兩點,記M、N兩點的縱坐標分別為yM、yN

(1) 求直線PB的斜率(k表示);

(2) 求點MN的縱坐標yM、yN (x1, y1表示) ,并判斷yM yN是否為定值?若是,請求出該定值;若不是,請說明理由.

【答案】12–9

【解析】試題分析:(1)設直線AB方程為,聯(lián)立方程,利用根與系數(shù)的關(guān)系得, ,表示kPB=即可;(2)設直線的方程為,表示出 ,整理化簡即可.

試題解析:

(1)設直線AB方程為,

聯(lián)立,消去,得

因為、,且,

,所以kPB=,

(2)又直線的方程為,則,

由題意可知, ,直線的方程為y+y1= (x+x1),

,yMyN===–9

綜上,乘積yMyN為定值–9

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相.某大型超市進行扶貧工作,按計劃每年六月從精準扶貧戶中訂購荔枝,每天進貨量相同且每公斤20元,售價為每公斤24元,未售完的荔枝降價處理,以每公斤16元的價格當天全部處理完.根據(jù)往年情況,每天需求量與當天平均氣溫有關(guān).如果平均氣溫不低于25攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫低于15攝氏度,需求量為公斤.為了確定6月1日到30日的訂購數(shù)量,統(tǒng)計了前三年6月1日到30日各天的平均氣溫數(shù)據(jù),得到如圖所示的頻數(shù)分布表:

平均氣溫

天數(shù)

2

16

36

25

7

4

(Ⅰ)假設該商場在這90天內(nèi)每天進貨100公斤,求這90天荔枝每天為該商場帶來的平均利潤(結(jié)果取整數(shù));

(Ⅱ)若該商場每天進貨量為200公斤,以這90天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天該商場不虧損的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全國大學生機器人大賽是由共青團中央,全國學聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學,清華大學,上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學生機器人大賽的激烈角逐之中,某大學共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團隊,現(xiàn)用分層抽樣的方法,從以上團隊中抽取20個團隊.

(1)應從大三抽取多少個團隊?

(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數(shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強化訓練,備戰(zhàn)機器人大賽.

(i)從統(tǒng)計學數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

(ii)從乙組中不低于140分的團隊中任取兩個團隊,求至少有一個團隊為144分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,且過點. 為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.

⑴求橢圓的標準方程;

⑵若,求的值;

⑶設直線, 的斜率分別為 ,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次考試結(jié)束,甲、乙、丙三位同學聚在一起聊天.甲說:“你們的成績都沒有我高”乙說:“我的成績一定比丙高 ”丙說:“你們的成績都比我高 ”成績公布后,三人成績互不相同且三人中恰有一人說得不對,若將三人成績從高到低排序,則甲排在第______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個圓錐底面半徑為,高為

1)求圓錐的表面積.

2)求圓錐的內(nèi)接正四棱柱表面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家收購某種農(nóng)產(chǎn)品的價格為120/t,其中征稅標準為每100元征收8元(稱稅率為8個百分點),計劃可收購at,為減輕農(nóng)民負擔,決定降低稅率x個百分點,預計收購量可增加2x個百分點.

1)寫出降低稅率后,稅收y(萬元)與x的關(guān)系式;

2)要使此項稅收在稅率調(diào)整后不低于原計劃的78%,試確定x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列各題中,用符號,連起來.

1實數(shù)滿足;

2;

3;

4是偶數(shù),是偶數(shù)(其中都是整數(shù)).

查看答案和解析>>

同步練習冊答案