給出一個(gè)不等式(x∈R),經(jīng)驗(yàn)證:當(dāng)c=1,2,3時(shí),不等式對一切實(shí)數(shù)x都成立。試問:當(dāng)c取任何正數(shù)時(shí),不等式對任何實(shí)數(shù)x是否都成立?若能成立,請給出證明;若不成立,請求出c的取值范圍,使不等式對任何實(shí)數(shù)x都能成立。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)。為實(shí)常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間上無極值,求的取值范圍;
(Ⅲ)已知且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)設(shè)函數(shù)在及時(shí)取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)若對于任意的,都有成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù), .
(Ⅰ)如果函數(shù)在上是單調(diào)函數(shù),求的取值范圍;
(Ⅱ)是否存在正實(shí)數(shù),使得函數(shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn)?若存在,請求出的取值范圍;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
①求函數(shù)的單調(diào)區(qū)間。
②若函數(shù)的圖象在點(diǎn)(2,)處的切線的傾斜角為,對任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求m取值范圍
③求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
已知定義在上的函數(shù),其中為大于零的常數(shù).
(Ⅰ)當(dāng)時(shí),令,
求證:當(dāng)時(shí),(為自然對數(shù)的底數(shù));
(Ⅱ)若函數(shù),在處取得最大值,
求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知.
(I)求函數(shù)在上的最小值;
(II)對一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
函數(shù),其中為常數(shù).
(1)證明:對任意,的圖象恒過定點(diǎn);
(2)當(dāng)時(shí),判斷函數(shù)是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對任意時(shí),恒為定義域上的增函數(shù),求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com