已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè),若對任意,均存在,使得,求的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求曲線在點(diǎn)處的切線方程;
(II)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)已知函數(shù).
(1)若,求曲線在處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中為正實(shí)數(shù),2.7182……
(1)當(dāng)時(shí),求在點(diǎn)處的切線方程。
(2)是否存在非零實(shí)數(shù),使恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且其導(dǎo)函數(shù)的圖像過原點(diǎn).
(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;
(2)若存在,使得,求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時(shí)都取得極值.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ,.
(Ⅰ)當(dāng) 時(shí),求函數(shù) 的最小值;
(Ⅱ)當(dāng) 時(shí),討論函數(shù) 的單調(diào)性;
(Ⅲ)求證:當(dāng) 時(shí),對任意的 ,且,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù),.
(Ⅰ)當(dāng)時(shí),在上恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ)是否存在實(shí)數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給出一個(gè)不等式(x∈R),經(jīng)驗(yàn)證:當(dāng)c=1,2,3時(shí),不等式對一切實(shí)數(shù)x都成立。試問:當(dāng)c取任何正數(shù)時(shí),不等式對任何實(shí)數(shù)x是否都成立?若能成立,請給出證明;若不成立,請求出c的取值范圍,使不等式對任何實(shí)數(shù)x都能成立。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com