函數(shù)f(x)=3x+5x的零點所在的區(qū)間是( 。
A、(-1,-
1
2
B、(-
1
2
,-
1
4
C、(-
1
4
,-
1
5
D、(-
1
5
,0)
考點:函數(shù)零點的判定定理
專題:常規(guī)題型
分析:由題意得,構(gòu)造子函數(shù),只要對應(yīng)的函數(shù)值異號,由零點存在性定理即可解決問題.
解答: 解:設(shè)g(x)=3x,h(x)=-5x,
∵設(shè)g(-1)=
1
3
,h(-1)=5,
 設(shè)g(-
1
2
)=
3
3
,h(-
1
2
)=
5
2

 設(shè)g(-
1
4
)=
1
3
1
4
,h(-
1
4
)=
5
4
,
 設(shè)g(-
1
5
)=
1
3
1
5
,h(-
1
5
)=1,
 設(shè)g(0)=1,h(0)=0,
∴函數(shù)f(x)在區(qū)間(
1
5
,0)上必有零點.
故選:D
點評:本題主要考查函數(shù)的零點及函數(shù)的零點存在性定理,函數(shù)的零點的研究就可轉(zhuǎn)化為相應(yīng)方程根的問題,函數(shù)與方程的思想得到了很好的體現(xiàn).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下面給出了四個式子,其中值為
0
的有( 。
AB
+
BC
+
CA
;                 
OA
+
OC
+
BO
+
CO

AB
-
AC
+
BD
-
CD
;             
NQ
+
QP
+
MN
-
MP
A、①②B、①③④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l經(jīng)過拋物線y2=4x的焦點,且與拋物線相交于A、B兩點,若弦AB中點的橫坐標為4,則|AB|=( 。
A、12B、10C、8D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直角坐標平面內(nèi)兩點P,Q滿足條件:
①P,Q都在函數(shù)f(x)的圖象上;
②P,Q關(guān)于原點對稱,則稱點對(P,Q)是函數(shù)f(x)的一個“友好點對”(點對(P,Q)與點對(Q,P)為同一個“友好點對”).
已知函數(shù)f(x)=
2x2+4x+1,x<0
2
ex
,x≥0
,則f(x)的“友好點對”有( 。﹤.
A、0B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O的半徑為1,四邊形ABCD為其內(nèi)接正方形,EF為圓O的一條直徑,M為正方形ABCD邊界上一動點,則
ME
MF
的最小值為( 。
A、-
3
4
B、-
1
2
C、-
1
4
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,面積為8的平行四邊形OABC,對角線AC⊥CO,AC與BO交于點E,某指數(shù)函數(shù)y=ax(a>0,且a≠1),經(jīng)過點E,B,則a=( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙、丙等6人排成一排,且甲、乙均在丙的同側(cè),則不同的排法共有( 。┓N(用數(shù)字作答).
A、720B、480
C、144D、360

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)的零點,經(jīng)過若干次運算后函數(shù)的零點在區(qū)間(a,b)內(nèi),當|a-b|<ε(ε為精確度)時,函數(shù)零點近似值x0=
a+b
2
與真實零點的誤差最大不超過( 。
A、
ε
4
B、
ε
2
C、ε
D、2ε

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x||x-1|<2,x∈R},N={-1,0,1,2,3},則M∩N=( 。
A、{0,1,2}
B、{-1,0,1,2}
C、{-1,0,2,3}
D、{0,1,2,3}

查看答案和解析>>

同步練習冊答案