【題目】某市教育局對該市普通高中學生進行學業(yè)水平測試,試卷滿分120分,現(xiàn)從全市學生中隨機抽查了10名學生的成績,其莖葉圖如下圖所示:

(1)已知10名學生的平均成績?yōu)?8,計算其中位數(shù)和方差;

(2)已知全市學生學習成績分布服從正態(tài)分布,某校實驗班學生30人.

①依據(jù)(1)的結果,試估計該班學業(yè)水平測試成績在的學生人數(shù)(結果四舍五入取整數(shù));

②為參加學校舉行的數(shù)學知識競賽,該班決定推薦成績在的學生參加預選賽若每個學生通過預選賽的概率為,用隨機變量表示通過預選賽的人數(shù),求的分布列和數(shù)學期望.

正態(tài)分布參考數(shù)據(jù):

【答案】(1) (2)4,

【解析】試題分析:(1) 由莖葉圖結合中位數(shù)與方差定義可得結果;

(2)①,該班學生成績在的人數(shù)為.

②隨機變量,顯然服從二項分布,從而可得的分布列和數(shù)學期望.

試題解析:

(1)由莖葉圖可知這10個數(shù)據(jù)依次為,

中位數(shù)為

由平均數(shù)為.

(2)①由(1)知,

該班學生成績在的人數(shù)為.

②隨機變量,顯然服從二項分布,

其分布列為,其中

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2axxln x,且f(x)≥0.

(1)a

(2)證明:f(x)存在唯一的極大值點x0,且e2<f(x0)<22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠ABC60°,為正三角形,且側面PAB底面ABCD. E,M分別為線段AB,PD的中點.

(I)求證:PE⊥平面ABCD;

II求證:PB//平面ACM;

(III)在棱CD上是否存在點G,使平面GAM⊥平面ABCD,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.

1)求點的軌跡方程;

2)設點的軌跡為曲線,過點且斜率不為0的直線交于兩點,點關于軸的對稱點為,證明直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐,平面平面,底面是正方形, .

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)求過點的切線方程;

(2)當時,求函數(shù)的最大值;

(3)證明:當時,不等式對任意均成立(其中為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

設函數(shù)f(x)=e2xaln x.

(1)討論f(x)的導函數(shù)f′(x)零點的個數(shù);

(2)證明:當a>0時,f(x)≥2aaln.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的圓心坐標為,半徑為2.以極點為原點,極軸為的正半軸,取相同的長度單位建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)).

(1)求圓的極坐標方程;

(2)設與圓的交點為, 軸的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐的側面底面,底面是直角梯形,且, , 中點.

(1)求證: 平面;

(2)若,求直線與平面所成角的大小.

查看答案和解析>>

同步練習冊答案