【題目】如圖所示,在四棱錐中,平面平面,底面是正方形,且, .
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)見解析(Ⅱ).
【解析】試題分析:
(Ⅰ)利用面面垂直的性質(zhì)定理可得平面.據(jù)此有,結(jié)合可得平面.最后利用面面垂直的判定定理可得平面平面.
(Ⅱ)取的中點為, 的中點為,連接,以的方向分別為軸, 軸, 軸的正方向建立空間直角坐標(biāo)系,據(jù)此可得平面的一個法向量為,平面的一個法向量為,據(jù)此計算可得二面角的余弦值為.
法2:若以為原點,建立空間直角坐標(biāo),則面的法向量面的法向量,計算可得為鈍角,則余弦值為.
試題解析:
(Ⅰ)證明:∵底面為正方形,∴.
又∵平面平面,∴平面.
又∵平面,∴.
∵, ,∴平面.
∵平面,∴平面平面.
(Ⅱ)取的中點為, 的中點為,連接
易得底面,
以為原點,以的方向分別為軸, 軸, 軸的正方向建立空間直角坐標(biāo)系,如圖,不妨設(shè)正方形的邊長為2,可得, , ,
設(shè)平面的一個法向量為
而,
即
取得
設(shè)平面的一個法向量為
而,
則即取得
由圖知所求二面角為鈍角
故二面角的余弦值為.
法2:若以為原點,建立空間直角坐標(biāo),如圖,
不妨設(shè)正方形的邊長為2
可得面的法向量
面的法向量
由圖可得為鈍角
∴余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過原點O且斜率為的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的焦點的坐標(biāo)為, 的坐標(biāo)為,且經(jīng)過點, 軸.
(1)求橢圓的方程;
(2)設(shè)過的直線與橢圓交于兩不同點,在橢圓上是否存在一點,使四邊形為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求曲線在點處的切線方程;
(Ⅱ)求證:存在唯一的,使得曲線在點處的切線的斜率為;
(Ⅲ)比較與的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項和為, .
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教育局對該市普通高中學(xué)生進(jìn)行學(xué)業(yè)水平測試,試卷滿分120分,現(xiàn)從全市學(xué)生中隨機(jī)抽查了10名學(xué)生的成績,其莖葉圖如下圖所示:
(1)已知10名學(xué)生的平均成績?yōu)?8,計算其中位數(shù)和方差;
(2)已知全市學(xué)生學(xué)習(xí)成績分布服從正態(tài)分布,某校實驗班學(xué)生30人.
①依據(jù)(1)的結(jié)果,試估計該班學(xué)業(yè)水平測試成績在的學(xué)生人數(shù)(結(jié)果四舍五入取整數(shù));
②為參加學(xué)校舉行的數(shù)學(xué)知識競賽,該班決定推薦成績在的學(xué)生參加預(yù)選賽若每個學(xué)生通過預(yù)選賽的概率為,用隨機(jī)變量表示通過預(yù)選賽的人數(shù),求的分布列和數(shù)學(xué)期望.
正態(tài)分布參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在小明的婚禮上,為了活躍氣氛,主持人邀請10位客人做一個游戲.第一輪游戲中,主持人將標(biāo)有數(shù)字1,2,…,10的十張相同的卡片放入一個不透明箱子中,讓客人依次去摸,摸到數(shù)字6,7,…,10的客人留下,其余的淘汰,第二輪放入1,2,…,5五張卡片,讓留下的客人依次去摸,摸到數(shù)字3,4,5的客人留下,第三輪放入1,2,3三張卡片,讓留下的客人依次去摸,摸到數(shù)字2,3的客人留下,同樣第四輪淘汰一位,最后留下的客人獲得小明準(zhǔn)備的禮物.已知客人甲參加了該游戲.
(1)求甲拿到禮物的概率;
(2)設(shè)表示甲參加游戲的輪數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的圓心坐標(biāo)為,半徑為2.以極點為原點,極軸為的正半軸,取相同的長度單位建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)求圓的極坐標(biāo)方程;
(2)設(shè)與圓的交點為, 與軸的交點為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點分別為、,設(shè)點,在中, ,周長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點的直線與橢圓相交于、兩點,若直線與的斜率之和為,求證:直線過定點,并求出該定點的坐標(biāo);
(3)記第(2)問所求的定點為,點為橢圓上的一個動點,試根據(jù)面積的不同取值范圍,討論存在的個數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com