【題目】已知拋物線上的、兩點(diǎn)滿足,點(diǎn)、在拋物線對(duì)稱軸的左右兩側(cè),且的橫坐標(biāo)小于零,拋物線頂點(diǎn)為,焦點(diǎn)為.
(1)當(dāng)點(diǎn)的橫坐標(biāo)為2,求點(diǎn)的坐標(biāo);
(2)拋物線上是否存在點(diǎn),使得(),若請(qǐng)說(shuō)明理由;
(3)設(shè)焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)是,求當(dāng)四邊形面積最小值時(shí)點(diǎn)的坐標(biāo).
【答案】(1);(2)詳見(jiàn)解析;(3).
【解析】
(1)根據(jù)向量的數(shù)量積的運(yùn)算公式,得到的方程,即可求解;
(2)由條件知,把代入,利用判別式,即可求解。
(3)由題意,設(shè)直線的方程為,聯(lián)立方程組,求得直線過(guò)定點(diǎn),利用基本不等式,即可求解。
(1),則,所以
(2)由條件知,把代入得
,
有2個(gè)點(diǎn)
點(diǎn)存在
點(diǎn)有4個(gè)
點(diǎn)有2個(gè)
點(diǎn)不存在
(3),解得
設(shè)直線的方程為
聯(lián)立
得
當(dāng)且僅當(dāng),面積最小
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)的解析式.
(2)求方程的解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某媒體為調(diào)查喜愛(ài)娛樂(lè)節(jié)目是否與觀眾性別有關(guān),隨機(jī)抽取了30名男性和30名女性觀眾,抽查結(jié)果用等高條形圖表示如圖:
(1)根據(jù)該等高條形圖,完成下列列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為喜歡娛樂(lè)節(jié)目與觀眾性別有關(guān)?
(2)從性觀眾中按喜歡節(jié)目與否,用分層抽樣的方法抽取5名做進(jìn)一步調(diào)查.從這5名中任選2名,求恰有1名喜歡節(jié)目和1名不喜歡節(jié)目的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,且過(guò)點(diǎn),若的兩焦點(diǎn)與其中一個(gè)頂點(diǎn)能構(gòu)成一個(gè)等邊三角形.
(1)求的方程.
(2)已知過(guò)的兩條直線,(斜率都存在)與的右半部分(軸右側(cè))分別相交于,兩點(diǎn),且的面積為,試判斷,的斜率之積是否為定值?若是,求出定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】亳州某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)活動(dòng),規(guī)定每位顧客從裝有編號(hào)為0,1,2,3四個(gè)相同小求的抽獎(jiǎng)箱中,每次取出一球,記下編號(hào)后放回,連續(xù)取兩次,若取出的兩個(gè)小球號(hào)碼相加之和等于6,則中一等獎(jiǎng);等于5中二等獎(jiǎng);等于4或3中三等獎(jiǎng).
(1)求中三等獎(jiǎng)的概率;
(2)求不中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱數(shù)列是“回歸數(shù)列”.
(1)前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由;
(2)設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值;
(3)是否對(duì)任意的等差數(shù)列,總存在兩個(gè)“回歸數(shù)列”和,使得()成立,請(qǐng)給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設(shè)S、A、B、C四點(diǎn)均在以O為球心的某個(gè)球面上。則點(diǎn)O到平面ABC的距離為________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓周上分布著2002 個(gè)點(diǎn),現(xiàn)將它們?nèi)我獾厝境砂咨蚝谏,如果從某一點(diǎn)開(kāi)始,依任一方向繞圓周運(yùn)動(dòng)到任一點(diǎn),所經(jīng)過(guò)的(包括該點(diǎn)本身)白點(diǎn)總數(shù)恒大于黑點(diǎn)總數(shù),則稱該點(diǎn)為好點(diǎn).為確保圓周上至少有一個(gè)好點(diǎn),試求所染黑點(diǎn)數(shù)目的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com