2.若$\overrightarrow{a}$=(3,4),則與$\overrightarrow{a}$共線的單位向量是( 。
A.(3,4)B.($\frac{3}{5}$,$\frac{4}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$)D.(1,1)

分析 求出向量的模,然后求解單位向量.

解答 解:$\overrightarrow{a}$=(3,4),可得|$\overrightarrow{a}$|=5,
與$\overrightarrow{a}$共線的單位向量是:($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$).
故選:C.

點(diǎn)評(píng) 本題考查向量共線以及單位向量的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知命題p的否命題是“若A?B,則∁UA∩∁UB=∁UB”,寫出命題p的逆否命題是若∁UA∩∁UB=∁UB,則A?B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知圓C的圓心在y軸的正半軸上,且與x軸相切,圓C與直線y=kx+3相交于A,B兩點(diǎn).當(dāng)$k=\sqrt{3}$時(shí),$|AB|=\sqrt{15}$.
(Ⅰ)求圓C的方程;
(Ⅱ)當(dāng)k取任意實(shí)數(shù)時(shí),問:在y軸上是否存在定點(diǎn)T,使得∠ATB始終被y軸平分?若存在,求出點(diǎn)T的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-2x-8≤0,x∈R},B={x|x2-(5+m)x+5m≤0,m∈R}.
(1)若A∩B=[2,4],求實(shí)數(shù)m的值;
(2)設(shè)全集為R,若B⊆∁RA,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=2,E,F(xiàn)分別是CC1,BC的中點(diǎn).
(1)求證:EF⊥平面AB1F;
(2)求三棱錐B1-AEF的體積;
(3)若點(diǎn)M是AB上一點(diǎn),求|FM|+|MB1|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某濱海高檔住宅小區(qū)給每一戶業(yè)主均提供兩套供水方案,一是供應(yīng)市政自來水,每噸自來水的水費(fèi)是2元;方案二是限最供應(yīng)10噸海底巖層中的溫泉水,苦溫泉水用水量不超過5噸.則按基本價(jià)每噸8元收。^5噸不超過8噸的部分按基本價(jià)的1.5倍收取,超過8噸不超過10噸的部分按基本價(jià)的2倍收。
(1)試寫出溫泉水用水費(fèi)y(元)與其用水量x(噸)之間的函數(shù)關(guān)系式;
(2)若業(yè)主小王繳納10月份的物業(yè)費(fèi)時(shí)發(fā)現(xiàn)一共用水16噸,被收取的費(fèi)用為72元,那么他當(dāng)月的自來水與溫泉水用水量各為多少噸?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.我國是水資源相對(duì)匿乏的國家,為鼓勵(lì)節(jié)約用水,某市打算出臺(tái)一項(xiàng)水費(fèi)政策措施.規(guī)定每季度每人用水量不超過5噸時(shí),每噸水費(fèi)收基本價(jià)1.3元.若超過5噸而不超過6噸時(shí),超過部分每噸水費(fèi)收3.9元,若超過6噸而不超過7噸時(shí),超過部分每噸水費(fèi)收6.5元.
(1)如果某人本季度實(shí)際用水量為x(x≤7)噸,設(shè)本季度他應(yīng)交水費(fèi)為y元,試求出y與x的函數(shù)解析式;
(2)畫出(1)中求出的函數(shù)圖象;
(3)如果小王本季度應(yīng)交水費(fèi)11.7元,那么這一季度他實(shí)際用水量是多少噸?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若$\frac{π}{4}<a<\frac{π}{2}$,則sina,cosa,tana的大小關(guān)系為cosα<sinα<tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.f(x)=sin(2ωx+φ),(0<ω<2π)以2為最小正周期,且在x=2時(shí)取最大值,則φ=2kπ-$\frac{3π}{2}$,k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案