【題目】以圓x2+y2﹣2x﹣2y﹣1=0內(nèi)橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)為頂點(diǎn)的三角形的個數(shù)為( )
A.76
B.78
C.81
D.84
【答案】A
【解析】解:∵圓x2+y2﹣2x﹣2y﹣1=0化成標(biāo)準(zhǔn)形式,得 (x﹣1)2+(y﹣1)2=3
∴圓心C(1,1),半徑r=
滿足橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn),且在圓內(nèi)的點(diǎn)有
(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),
(2,0),(2,1),(2,2)共9個點(diǎn)
9個點(diǎn)中任取3個,共有 =84種取法,其中三點(diǎn)共線的情況共有8種
∴這9個點(diǎn)能構(gòu)成三角形的個數(shù)為84﹣8=76個
故選:A
【考點(diǎn)精析】利用圓的一般方程對題目進(jìn)行判斷即可得到答案,需要熟知圓的一般方程的特點(diǎn):(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項(xiàng);(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2是橢圓 (a>b>0)的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P(﹣1, )在橢圓上,且 =0,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點(diǎn)A,B
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng) =λ,且滿足 ≤λ≤ 時,求弦長|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點(diǎn)分別為F1 , F2 , 點(diǎn)G在橢圓C上,且 =0,△GF1F2的面積為2.
(1)求橢圓C的方程;
(2)直線l:y=k(x﹣1)(k<0)與橢圓Γ相交于A,B兩點(diǎn).點(diǎn)P(3,0),記直線PA,PB的斜率分別為k1 , k2 , 當(dāng) 最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列A:a1 , a2 , …,an(n≥3)中ai∈N*(1≤i≤n)且對任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,則稱數(shù)列A為“U﹣數(shù)列”.
(Ⅰ)若數(shù)列1,x,y,7為“U﹣數(shù)列”,寫出所有可能的x,y;
(Ⅱ)若“U﹣數(shù)列”A:a1 , a2 , …,an中,a1=1,an=2017,求n的最大值;
(Ⅲ)設(shè)n0為給定的偶數(shù),對所有可能的“U﹣數(shù)列”A:a1 , a2 , …,an0 , 記M=max{a1 , a2 , …,an0},其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數(shù)中最大的數(shù),求M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面使用類比推理正確的是( )
A.直線a∥b,b∥c,則a∥c,類推出:向量 , ,則
B.同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b.類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b
C.實(shí)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b.類推出:復(fù)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b
D.以點(diǎn)(0,0)為圓心,r為半徑的圓的方程為x2+y2=r2 . 類推出:以點(diǎn)(0,0,0)為球心,r為半徑的球的方程為x2+y2+z2=r2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)镈={x|x≠0},且滿足對于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x﹣1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,函數(shù) 的定義域?yàn)榧螦,函數(shù)y=log2(x+2)的定義域?yàn)榧螧,則集合(CUA)∩B= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x,對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= +lnx,則( )
A.x=2為f(x)的極大值點(diǎn)??
B.x=2為f(x)的極小值點(diǎn)
C.x= 為f(x)的極大值點(diǎn)??
D.x= 為f(x)的極小值點(diǎn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com