【題目】若數(shù)列A:a1 , a2 , …,an(n≥3)中ai∈N*(1≤i≤n)且對任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,則稱數(shù)列A為“U﹣數(shù)列”.
(Ⅰ)若數(shù)列1,x,y,7為“U﹣數(shù)列”,寫出所有可能的x,y;
(Ⅱ)若“U﹣數(shù)列”A:a1 , a2 , …,an中,a1=1,an=2017,求n的最大值;
(Ⅲ)設(shè)n0為給定的偶數(shù),對所有可能的“U﹣數(shù)列”A:a1 , a2 , …,an0 , 記M=max{a1 , a2 , …,an0},其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個(gè)數(shù)中最大的數(shù),求M的最小值.
【答案】解:(Ⅰ)∵數(shù)列A:a1,a2,…,an(n≥3)中ai∈N*(1≤i≤n)且對任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,則稱數(shù)列A為“U﹣數(shù)列”.
數(shù)列1,x,y,7為“U﹣數(shù)列”,
∴所有可能的x,y為 , 或 .
(Ⅱ)n的最大值為65,理由如下
一方面,注意到:ak+1+ak﹣1>2akak+1﹣ak>ak﹣ak﹣1
對任意的1≤i≤n﹣1,令bi=ai+1﹣ai,則bi∈Z且bk>bk﹣1(2≤k≤n﹣1),故bk≥bk﹣1+1對任意的2≤k≤n﹣1恒成立.(★)
當(dāng)a1=1,an=2017時(shí),注意到b1=a2﹣a1≥1﹣1=0,得bi=(bi﹣bi﹣1)+(bi﹣1﹣bi﹣2)+…+(b2﹣b1)+b1≥i﹣1(2≤i≤n﹣1)
此時(shí)
即 ,解得:﹣62≤n≤65,故n≤65
另一方面,取bi=i﹣1(1≤i≤64),則對任意的2≤k≤64,bk>bk﹣1,故數(shù)列{an}為“U﹣數(shù)列”,
此時(shí)a65=1+0+1+2+…+63=2017,即n=65符合題意.
綜上,n的最大值為65.
(Ⅲ)M的最小值為 ,
證明如下:
當(dāng)n0=2m(m≥2,m∈N*)時(shí),
一方面:由(★)式,bk+1﹣bk≥1,bm+k﹣bk=(bm+k﹣bm+k﹣1)+(bm+k﹣1﹣bm+k﹣2)+…+(bk+1﹣bk)≥m.
此時(shí)有:(a1+a2m)﹣(am+am+1)=(bm+1+bm+2+…+b2m﹣1)﹣(b1+b2+…+bm﹣1)
=(bm+1﹣b1)+(bm+2﹣b2)+…+(b2m﹣1﹣bm﹣1)≥m(m﹣1)
故
另一方面,當(dāng)b1=1﹣m,b2=2﹣m,…,bm﹣1=﹣1,bm=0,bm+1=1,…,b2m﹣1=m﹣1時(shí),
ak+1+ak﹣1﹣2ak=(ak+1﹣ak)﹣(ak﹣ak﹣1)=bk﹣bk﹣1=1>0
取am=1,則am+1=1,a1>a2>a3>…>am,am+1<am+2<…<a2m,
且
此時(shí) .
綜上,M的最小值為 .
【解析】(Ⅰ)將k=2和k=3分別代入ak+1+ak-12ak中得到線性約束條件,并找出其整點(diǎn);(Ⅱ)(Ⅲ)構(gòu)造新數(shù)列,使bi=ai+1ai.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當(dāng)a=﹣1時(shí),求函數(shù)f(x)的最大值和最小值.
(2)函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù),求實(shí)數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形ABCD中,AB= ,AD=2 ,CD= ,∠CBD=30°,∠BCD=120°.
(1)求BD的長;
(2)求∠ADC的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)y=f(2x﹣1)的定義域是( )
A.{x|0≤x≤1}
B.{x|0≤x≤2}
C.{x| ≤x≤ }
D.{x|﹣1≤x≤3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以圓x2+y2﹣2x﹣2y﹣1=0內(nèi)橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)為頂點(diǎn)的三角形的個(gè)數(shù)為( )
A.76
B.78
C.81
D.84
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2 sin(θ+ ). (Ⅰ)求曲線C1與曲線C2的普通方程;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(﹣1,3),且曲線C1與曲線C2交于B,D兩點(diǎn),求|PB||PD|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com