【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣bx
(1)當(dāng)a=b= 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=0,b=﹣1時,方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:依題意,知f(x)的定義域?yàn)椋?,+∞),

當(dāng)a=b= 時,f(x)=lnx﹣ x2 x,

∴f′(x)=

令f′(x)=0,解得:x=1或x=﹣2(舍去),經(jīng)檢驗(yàn),x=1是方程的根.

當(dāng)0<x<1時,f′(x)>0,當(dāng)x>1時,f′(x)<0,

所以f(x)的單調(diào)遞增區(qū)間是(0,1),單調(diào)遞減區(qū)間是(1,+∞)


(2)解:當(dāng)a=0,b=﹣1時,f(x)=lnx+x,

由f(x)=mx得mx=lnx+x,

又因?yàn)閤>0,所以m=1+ ,

要使方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,

只需m=1+ 有唯一實(shí)數(shù)解,

令g(x)=1+ (x>0),∴g′(x)= (x>0),

由g′(x)>0,得:0<x<e,由g′(x)<0,得x>e,

所以g(x)在區(qū)間[1,e]上是增函數(shù),在區(qū)間[e,e2]上是減函數(shù),

g(1)=1+ =1,g(e2)=1+ =1+

g(e)=1+ =1+ ,

所以m=1+ 或1≤m<1+


【解析】(1)將a,b的值代入,求出函數(shù)f(x)的表達(dá)式,導(dǎo)數(shù),從而求出函數(shù)的單調(diào)區(qū)間;(2)將a,b的值代入函數(shù)的表達(dá)式,問題轉(zhuǎn)化為只需m=1+ 有唯一實(shí)數(shù)解,求出函數(shù)y=g(x)=1+ 的單調(diào)性,從而求出m的范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項(xiàng)目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運(yùn)動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運(yùn)動員只有在摔倒或到達(dá)終點(diǎn)時才停止滑行,現(xiàn)在用表示該運(yùn)動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).

(1)求該運(yùn)動員停止滑行時恰好已順利通過個交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O:x2+y2=4,點(diǎn)F( ,0),以線段MF為直徑的圓內(nèi)切于圓O,記點(diǎn)M的軌跡為C
(1)求曲線C的方程;
(2)若過F的直線l與曲線C交于A,B兩點(diǎn),問:在x軸上是否存在點(diǎn)N,使得 為定值?若存在,求出點(diǎn)N坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列的前項(xiàng)和,且

(1)求;

(2)令,計算,由此推測數(shù)列是等差數(shù)列還是等比數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面推理過程中使用了類比推理方法,其中推理正確的是( )

A. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條直線,若,則

B. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條向量,若,則

C. 在平面內(nèi),若兩個正三角形的邊長的比為,則它們的面積比為.類比推出:在空間中,若兩個正四面體的棱長的比為,則它們的體積比為

D. ,則復(fù)數(shù).類比推理:,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)都是正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , Sn=an2+ an , n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足:b1=1,bn﹣bn1=2an(n≥2),求數(shù)列{ }的前n項(xiàng)和Tn
(3)若Tn≤λ(n+4)對任意n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種型號汽車四個輪胎半徑相同,均為R=40cm,同側(cè)前后兩輪胎之間的距離(指輪胎中心之間距離)為l=280cm (假定四個輪胎中心構(gòu)成一個矩形).當(dāng)該型號汽車開上一段上坡路ABC(如圖(1)所示,其中∠ABC=a( ),且前輪E已在BC段上時,后輪中心在F位置;若前輪中心到達(dá)G處時,后輪中心在H處(假定該汽車能順利駛上該上坡路).設(shè)前輪中心在E和G處時與地面的接觸點(diǎn)分別為S和T,且BS=60cm,ST=100cm.(其它因素忽略不計)

(1)如圖(2)所示,F(xiàn)H和GE的延長線交于點(diǎn)O,求證:OE=40cot (cm);
(2)當(dāng)a= π時,后輪中心從F處移動到H處實(shí)際移動了多少厘米?(精確到1cm)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).

(1)排成前后兩排,前排3人,后排4人;(2)全體站成一排,甲不站排頭也不站排尾;

(3)全體站成一排,女生必須站在一起;(4)全體站成一排,男生互不相鄰.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案