【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4MAA1的中點(diǎn),PBC上的一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過(guò)棱CC1M的最短路線長(zhǎng)為,設(shè)這條最短路線與CC1的交點(diǎn)為N.求:

1)該三棱柱的側(cè)面展開(kāi)圖的對(duì)角線的長(zhǎng);

2PCNC的長(zhǎng).

【答案】(1) (2) PC=2, NC=

【解析】

1)由題意結(jié)合展開(kāi)圖的特征求解其對(duì)角線長(zhǎng)即可;

2)首先畫出其展開(kāi)圖,然后結(jié)合展開(kāi)圖的幾何特征即可求得PCNC的長(zhǎng).

1)正三棱柱ABC-A1B1C1的側(cè)面展開(kāi)圖是一個(gè)長(zhǎng)為9,寬為4的矩形,

其對(duì)角線的長(zhǎng)為

2

如圖所示,將平面BB1C1C繞棱CC1旋轉(zhuǎn)120°使其與側(cè)面AA1C1C在同一平面上,點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1的位置,連接MP1,則MP1就是由點(diǎn)P沿棱柱側(cè)面經(jīng)過(guò)棱CC1到點(diǎn)M的最短路線.

設(shè)PC=x,則P1C=x

RtMAP1中,

在勾股定理得(3+x)2+22=29

求得x=2

PC=P1C=2

=,

NC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,,分別是,,的中點(diǎn).

(1)求異面直線所成角的大小;

(2)棱上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的為________(正確序號(hào)全部填上)

1)空間中,一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,則這兩個(gè)角相等或互補(bǔ);

2)一個(gè)二面角的兩個(gè)半平面與另一個(gè)二面角的兩個(gè)半平面分別垂直,則這兩個(gè)二面角相等或互補(bǔ);

3)直線,為異面直線,所成角的大小為,過(guò)空間一點(diǎn)作直線,使l與直線及直線都成相等的角,這樣的直線可作3條;

4)直線與平面相交,過(guò)直線可作唯一的平面與平面垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對(duì)價(jià)格(單位:千元/噸)和利潤(rùn)的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:

1

2

3

4

5

8

6

5

4

2

已知具有線性相關(guān)關(guān)系.

(1)求關(guān)于的線性回歸方程

(2)若每噸該農(nóng)產(chǎn)品的成本為2.2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤(rùn)取到最大值?

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列同時(shí)滿足條件:①存在互異的使得為常數(shù));

②當(dāng)時(shí),對(duì)任意都有,則稱數(shù)列為雙底數(shù)列.

(1)判斷以下數(shù)列是否為雙底數(shù)列(只需寫出結(jié)論不必證明);

; ②; ③

(2)設(shè),若數(shù)列是雙底數(shù)列,求實(shí)數(shù)的值以及數(shù)列的前項(xiàng)和;

(3)設(shè),是否存在整數(shù),使得數(shù)列為雙底數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),是兩條不同的直線,,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,,則

②若,,則

③若,,則

④若,,則

其中正確命題的序號(hào)是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,在《我是演說(shuō)家》第四季這檔節(jié)目中,英國(guó)華威大學(xué)留學(xué)生游斯彬的“數(shù)學(xué)之美”的演講視頻在微信朋友圈不斷被轉(zhuǎn)發(fā),他的視角獨(dú)特,語(yǔ)言幽默,給觀眾留下了深刻的印象.某機(jī)構(gòu)為了了解觀眾對(duì)該演講的喜愛(ài)程度,隨機(jī)調(diào)查了觀看了該演講的140名觀眾,得到如下的列聯(lián)表:(單位:名)

總計(jì)

喜愛(ài)

40

60

100

不喜愛(ài)

20

20

40

總計(jì)

60

80

140

(1)根據(jù)以上列聯(lián)表,問(wèn)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為觀眾性別與喜愛(ài)該演講有關(guān).(精確到0.001)

(2)從這60名男觀眾中按對(duì)該演講是否喜愛(ài)采取分層抽樣,抽取一個(gè)容量為6的樣本,然后隨機(jī)選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛(ài)該演講的概率.

附:臨界值表

0.10

0.05

0.025

0.010

0.005

2.705

3.841

5.024

6.635

7.879

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),且,現(xiàn)有如下四個(gè)結(jié)論:

;平面;

三棱錐的體積為定值;異面直線所成的角為定值,

其中正確結(jié)論的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:

(1) 證明:數(shù)列是等比數(shù)列;

(2) 求使不等式成立的所有正整數(shù)m、n的值;

(3) 如果常數(shù)0 < t < 3,對(duì)于任意的正整數(shù)k,都有成立,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案