已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈D
,其中0<a<b.
(1)當D=(0,+∞)時,設t=
x
a
+
b
x
,f(x)=g(t),求y=g(t)的解析式及定義域;
(2)當D=(0,+∞),a=1,b=2時,求f(x)的最小值;
(3)設k>0,當a=k2,b=(k+1)2時,1≤f(x)≤9對任意x∈[a,b]恒成立,求k的取值范圍.
(1)∵t=
x
a
+
b
x
,0<a<b,x>0,
∴t≥2
b
a
=
2
ab
a
,
又f(x)=(
x
a
-1)
2
+(
b
x
-1)
2
=(
x
a
+
b
x
-1)
2
+1-
2b
a
,f(x)=g(t),
∴g(t)=(t-1)2+1-
2b
a
,t∈[
2
ab
a
,+∞);
(2)∵x>0,a=1,b=2,
∴f(x)=(x+
2
x
-1)
2
-3,又x+
2
x
-1≥2
2
-1(當且僅當x=
2
時取“=”)
∴f(x)≥(2
2
-1)
2
-3=6-4
2
,
∴f(x)min=6-4
2

(3)由題意可得,x∈[a,b]=[k2,(k+1)2],1≤f(x)≤9恒成立,
∴只需求得x∈[k2,(k+1)2]時f(x)的最小值即可.
∵此時,f(x)=[
x
k2
+
(k+1)
x
2
-1]
2
+1-
2(k+1)2
k2

∵k>0,x>0,令g(x)=
x
k2
+
(k+1)2
x
=
1
k2
(x+
k2(k+1)2
x

由雙鉤函數(shù)y=h(x)=x+
a
x
(a>0)的性質h(x)在(0,
a
]單調遞減,在[
a
,+∞)單調遞增得:
g(x)在[k2,k(k+1)]上單調遞減,在[k(k+1),(k+1)2]單調遞增
∴當x=k(k+1)時g(x)取到最小值;
當x=k2時,g(k2)=2+
2
k
+
1
k2

當x=(k+1)2時,g((k+1)2)=2+
2
k
+
1
k2
=g(k2),即當x=k2或(k+1)2時g(x)取到最大值;
∴g(x)min=
2(k+1)
k
,g(x)max=2+
2
k
+
1
k2
;
由題意可知,當g(x)取到最小值時,f(x)取到最小值,g(x)取到最大值時,f(x)亦取到最大值.
∴f(x)min=[
2(k+1)
k
-1]
2
+1-
2(k+1)2
k2
=
2
k2
;
同理可求,f(x)max=[
(k+1)2
k2
-1]
2
=(
2
k
+
1
k2
)
2

∵1≤f(x)≤9對任意x∈[k2,(k+1)2]恒成立,
2
k2
≥1
(
2
k
+
1
k2
)
2
≤9
,而k>0,
∴0<k≤
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實數(shù)a的取值范圍是(  )
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調性.

查看答案和解析>>

同步練習冊答案