已知f(x)=-
1
2
x3+x2+x-1
,則過點(diǎn)(2,1)的切線方程是______.
求導(dǎo)函數(shù),可得f′(x)=-
3
2
x2+2x+1

若(2,1)為切點(diǎn),則f′(2)=-1,∴切線方程為y-1=-(x-2),即x+y-3=0
若(2,1)不是切點(diǎn),設(shè)切點(diǎn)坐標(biāo)為(m,n),則
-
3
2
m2+2m+1=
n-1
m-2
n=-
1
2
m3+m2+m-1

∴m=0,n=-1,
∴切線方程為y+1=
1+1
2-0
(x-0),即x-y-1=0,
故答案為:x+y-3=0或x-y-1=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x3+bx2+cx,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(diǎn)(1,0),(2,0),如圖所示.則下列說法中不正確的編號(hào)是______.(寫出所有不正確說法的編號(hào))
(1)當(dāng)x=
3
2
時(shí)函數(shù)取得極小值;
(2)f(x)有兩個(gè)極值點(diǎn);
(3)c=6;
(4)當(dāng)x=1時(shí)函數(shù)取得極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

問常數(shù)為何值時(shí),函數(shù)處有極大值,在處有極小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3x-1,
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若f(x)=x3+3ax2+3(a+2)x+1有三個(gè)單調(diào)區(qū)間,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3x.
(1)求曲線y=f(x)在點(diǎn)M(2,2)處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)的極值(要列出表格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=xekx(k≠0).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)當(dāng)k>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線y=
1
3
x3在x=x0處的切線L經(jīng)過點(diǎn)P(2,
8
3
),求切線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1處有極值0,則a+b=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案