8.已知α、β、γ是平面,a、b是直線,且α∩β=a,α⊥γ,β⊥γ,b?γ,則( 。
A.a∥bB.a⊥b
C.a與b相交D.不能確定a與b的關(guān)系

分析 證明a⊥γ,即可得出a⊥b.

解答 解:∵α∩β=a,α⊥γ,β⊥γ,
∴a⊥γ,
∵b?γ,
∴a⊥b,
故選:B.

點(diǎn)評(píng) 本題考查平面與平面垂直的性質(zhì),考查直線與平面垂直的性質(zhì),比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=x5+x,若a+b>0,b+c>0,c+a>0,則f(a)+f(b)+f(c)0(填<、=、>、≤).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)若$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(2,-1),且($\overrightarrow{a}$-x$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),求x的值;
(2)向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),當(dāng)k為何值時(shí),A,B,C三點(diǎn)共線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知f(2x+1)=$\frac{4x+1}{2x-1}$,求f(x)表達(dá)式和值域;
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖.圓錐的軸截面SAB為等腰直角三角形,Q為底面圓周上-點(diǎn).
(1)若QB的中點(diǎn)為C,求證:平面SOC⊥平面SBQ.
(2)若∠AOQ=120°,QB=$\sqrt{3}$,求圓錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線l:A(x-2)+B(y+3)+C=0交圓M:(x-2)2+(y+3)2=$\frac{4}{3}$于P,Q兩點(diǎn),且A2+B2=3C2,則$\overrightarrow{MP}$•$\overrightarrow{MQ}$=( 。
A.-$\frac{1}{3}$B.-$\frac{2}{3}$C.-1D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=x2-4x+5-c恰好有兩個(gè)不相等的零點(diǎn)x1,x2,且1≤x1<x2≤5,則x1+x2=4,c的取值范圍為(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)的定義域?yàn)镈={x|x≠0},且滿足對(duì)于任意x,y∈D有f(xy)=f(x)+f(y).
(1)求f(1)和f(-1)的值;
(2)判斷f(x)的奇偶性并說明理由;
(3)如果f(4)=1,f(2x-6)≤3,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.判斷下列函數(shù)的奇偶性:
(1)f(x)=x${\;}^{\frac{2}{3}}$+x${\;}^{-\frac{2}{3}}$;
(2)f(x)=$\sqrt{{x}^{2}-1}$•$\sqrt{1-{x}^{2}}$;
(3)f(x)=$\sqrt{x}$+$\frac{1}{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案