【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , Sn=n2﹣4n﹣5

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=|an|,數(shù)列{bn}的前n項(xiàng)和為Tn, Tn

【答案】(1)(2)

【解析】

(1)由Sn=n2﹣4n﹣5,可得當(dāng)n2時(shí),an=Sn﹣Sn﹣1=2n﹣5,再檢驗(yàn)當(dāng)n=1時(shí),a1是否適合上式,即可求得數(shù)列{an}的通項(xiàng)公式;

(2)由bn=|an|=|2n﹣5|,分n=1、n=2、n3三類討論,分別求得數(shù)列{bn}的前n項(xiàng)和Tn,最后綜合起來即可求.

(1)解:∵Sn=n2﹣4n﹣5,

∴當(dāng)n≥2時(shí),an=Sn﹣Sn1=n2﹣4n﹣5﹣[(n﹣1)2﹣4(n﹣1)﹣5]=2n﹣5,

又當(dāng)n=1時(shí),a1=﹣8不適合上式,

(2)解:∵bn=|an|,數(shù)列{bn}的前n項(xiàng)和為Tn,

當(dāng)n=1時(shí),b1=|a1|=8,T1=8;

當(dāng)n=2時(shí),b2=|a2|=1,T2=8+1=9;

n≥3時(shí),an=2n﹣5≥1>0,

bn=|an|=an=2n﹣5,

Tn=8+1+(1+3+…+2n﹣5)=9+ =(n﹣2)2+9=n2﹣4n+13.

綜上,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求不等式的解集;

(2)若對一切,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )

A. 當(dāng)時(shí),“”是“”的充要條件

B. 當(dāng)時(shí),“”是“”的充分不必要條件

C. 當(dāng)時(shí),“”是“”的必要不充分條件

D. 當(dāng)時(shí),“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}滿足a1=1,且a1 , a2 , a5成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若bn=(﹣1)n (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,DBC的中點(diǎn).

(1)求證:A1B∥平面ADC1;

(2)若ABAC,ABAC=1,AA1=2,求幾何體ABD-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個車間為了規(guī)定工時(shí)定額,需要確定加工某種零件所花費(fèi)的時(shí)間,為此進(jìn)行了6次試驗(yàn),收集數(shù)據(jù)如下:

零件數(shù)(個)

加工時(shí)間(小時(shí))

(Ⅰ)在給定的坐標(biāo)系中劃出散點(diǎn)圖,并指出兩個變量是正相關(guān)還是負(fù)相關(guān);

(Ⅱ)求回歸直線方程;

(Ⅲ)試預(yù)測加工個零件所花費(fèi)的時(shí)間?

附:對于一組數(shù)據(jù),……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C是直線l上的三點(diǎn),向量 , 滿足: .則函數(shù)y=f(x)的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左焦點(diǎn)為,左準(zhǔn)線方程為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線交橢圓, 兩點(diǎn).

①若直線經(jīng)過橢圓的左焦點(diǎn),交軸于點(diǎn),且滿足, .求證: 為定值;

②若為原點(diǎn)),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得萬元到萬元的投資利益,現(xiàn)準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時(shí)獎金不超過收益的

)請分析函數(shù)是否符合公司要求的獎勵函數(shù)模型,并說明原因.

)若該公司采用函數(shù)模型作為獎勵函數(shù)模型,試確定最小正整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案