【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}滿足a1=1,且a1 , a2 , a5成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若bn=(﹣1)n (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

【答案】
(1)解:設(shè)各項(xiàng)均不相等的等差數(shù)列{an}的公差為d,滿足a1=1,

且a1,a2,a5成等比數(shù)列,

可得a22=a1a5,即(1+d)2=1+4d,

解得d=2(0舍去),

則an=1+2(n﹣1)=2n﹣1(n∈N*


(2)解:bn=(﹣1)n =(﹣1)n

=(﹣1)n + ),

當(dāng)n為偶數(shù)時(shí),前n項(xiàng)和Sn=(﹣1﹣ )+( )+(﹣ )+…+( +

=﹣1+ =﹣ ;

當(dāng)n為奇數(shù)時(shí),n﹣1為偶數(shù),前n項(xiàng)和Sn=Sn1+(﹣

=﹣ +(﹣ )=﹣

則Sn=


【解析】(1)設(shè)各項(xiàng)均不相等的等差數(shù)列{an}的公差為d,由等差數(shù)列的通項(xiàng)公式和等比數(shù)列中項(xiàng)的性質(zhì),解方程可得d=2,進(jìn)而得到所求通項(xiàng)公式;(2)求得bn=(﹣1)n =(﹣1)n + ),再分n為偶數(shù)和奇數(shù),運(yùn)用裂項(xiàng)相消求和,化簡(jiǎn)整理即可得到所求和.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),a為常數(shù)

1)判斷fx)在定義域內(nèi)的單調(diào)性

2)若fx)在上的最小值為,求a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x|+bx+c,給出下列命題:①b=0,c>0時(shí),方程f(x)=0只有一個(gè)實(shí)數(shù)根;②c=0時(shí),y=f(x)是奇函數(shù);③方程f(x)=0至多有兩個(gè)實(shí)根.上述三個(gè)命題中所有正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2 (x≠0,常數(shù)a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說明理由;
(2)若f(x)在(﹣∞,﹣2]上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)= x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí)C(x)=51x+ ﹣1450(萬元),通過市場(chǎng)分析,若每件售價(jià)為500元時(shí),該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫出年利潤(rùn)L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時(shí),拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , Sn=n2﹣4n﹣5

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=|an|,數(shù)列{bn}的前n項(xiàng)和為Tn, Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只口袋有形狀大小質(zhì)地都相同的只小球,這只小球上分別標(biāo)記著數(shù)字.

甲乙丙三名學(xué)生約定:

)每個(gè)不放回地隨機(jī)摸取一個(gè)球;

)按照甲乙丙的次序一次摸;

)誰摸取的球的數(shù)字對(duì)打,誰就獲勝.

用有序數(shù)組表示這個(gè)試驗(yàn)的基本事件,例如:表示在一次試驗(yàn)中,甲摸取的是數(shù)字,乙摸取的是數(shù)字,丙摸取的是數(shù)字;表示在一次實(shí)驗(yàn)中,甲摸取的是數(shù),乙摸取的是數(shù)字,丙摸取的是數(shù)字.

(Ⅰ)列出基本事件,并指出基本事件的總數(shù);

(Ⅱ)求甲獲勝的概率;

(Ⅲ)寫出乙獲勝的概率,并指出甲乙丙三名同學(xué)獲勝的概率與其摸取的次序是否有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M:(x+cos2+(y-sin2=1,直線lykx,下面四個(gè)命題:

(A)對(duì)任意實(shí)數(shù)k,直線l和圓M相切;

(B)對(duì)任意實(shí)數(shù)k,直線l和圓M有公共點(diǎn);

(C)對(duì)任意實(shí)數(shù)必存在實(shí)數(shù)k,使得直線l與和圓M相切;

(D)對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù),使得直線l與和圓M相切.

其中真命題的代號(hào)是______________(寫出所有真命題的代號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案