【題目】己知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的最小值為-1,,數(shù)列滿足,,記,表示不超過(guò)的最大整數(shù).證明:.
【答案】(Ⅰ)見(jiàn)解析; (Ⅱ)見(jiàn)解析.
【解析】分析:(Ⅰ)函數(shù)求導(dǎo),討論和兩種情況即可;
(Ⅱ)由(Ⅰ)知函數(shù)的最小值點(diǎn)為,得,令,進(jìn)而得,則由歸納可猜想當(dāng)時(shí),,利用數(shù)學(xué)歸納法可證得,于是,,則,從而利用裂項(xiàng)相消法可得證.
詳解:(Ⅰ)函數(shù)的定義域?yàn)?/span>.
1、當(dāng)時(shí),,即在上為增函數(shù);
2、當(dāng)時(shí),令得,即在上為增函數(shù);
同理可得在上為減函數(shù).
(Ⅱ)有最小值為-1,由(Ⅰ)知函數(shù)的最小值點(diǎn)為,
即,則,
令,
當(dāng)時(shí),,故在上是減函數(shù)
所以當(dāng)時(shí)
∵,∴.(未證明,直接得出不扣分)
則.由得,
從而.∵,∴.
猜想當(dāng)時(shí),.
下面用數(shù)學(xué)歸納法證明猜想正確.
1、當(dāng)時(shí),猜想正確.
2、假設(shè)時(shí),猜想正確.
即時(shí),.
當(dāng)時(shí),有,
由(Ⅰ)知是上的增函數(shù),
則,即,
由得.
綜合1、2得:對(duì)一切,猜想正確.
即時(shí),.
于是,,則.
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)過(guò)作斜率分別為的兩條直線,分別交橢圓于點(diǎn),且,證明:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)若的解集為,且方程有兩個(gè)相等的根,求解析式;
(2)若,且對(duì)任意實(shí)數(shù)均有成立,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若時(shí),討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上恰有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查。
(I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。
(II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2所學(xué)校均為小學(xué)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生物學(xué)家預(yù)言,21世紀(jì)將是細(xì)菌發(fā)電造福人類的時(shí)代。說(shuō)起細(xì)菌發(fā)電,可以追溯到1910年,英國(guó)植物學(xué)家利用鉑作為電極放進(jìn)大腸桿菌的培養(yǎng)液里,成功地制造出世界上第一個(gè)細(xì)菌電池。然而各種細(xì)菌都需在最適生長(zhǎng)溫度的范圍內(nèi)生長(zhǎng)。當(dāng)外界溫度明顯高于最適生長(zhǎng)溫度,細(xì)菌被殺死;如果在低于細(xì)菌的最低生長(zhǎng)溫度時(shí),細(xì)菌代謝活動(dòng)受抑制。為了研究某種細(xì)菌繁殖的個(gè)數(shù)是否與在一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種細(xì)菌的6組觀測(cè)數(shù)據(jù)如下表:
經(jīng)計(jì)算得:,,線性回歸模型的殘差平方和.其中分別為觀測(cè)數(shù)據(jù)中的溫度與繁殖數(shù),.
參考數(shù)據(jù):,,
(Ⅰ)求關(guān)于的線性回歸方程(精確到0.1);
(Ⅱ)若用非線性回歸模型求得關(guān)于回歸方程為,且非線性回歸模型的殘差平方和.
(ⅰ)用相關(guān)指數(shù)說(shuō)明哪種模型的擬合效果更好;
(ⅱ)用擬合效果好的模型預(yù)測(cè)溫度為34℃時(shí)該種細(xì)菌的繁殖數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)為,;
相關(guān)指數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C1的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)求曲線C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(2)射線OP:(其中)與C2交于P點(diǎn),射線OQ:與C2交于Q點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時(shí),求的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面ABC,,,,,,點(diǎn)E和F分別為BC和的中點(diǎn).
(1)求證:平面;
(2)求證:直線平面;
(3)求直線與平面所成角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com