【題目】生物學(xué)家預(yù)言,21世紀(jì)將是細(xì)菌發(fā)電造福人類(lèi)的時(shí)代。說(shuō)起細(xì)菌發(fā)電,可以追溯到1910年,英國(guó)植物學(xué)家利用鉑作為電極放進(jìn)大腸桿菌的培養(yǎng)液里,成功地制造出世界上第一個(gè)細(xì)菌電池。然而各種細(xì)菌都需在最適生長(zhǎng)溫度的范圍內(nèi)生長(zhǎng)。當(dāng)外界溫度明顯高于最適生長(zhǎng)溫度,細(xì)菌被殺死;如果在低于細(xì)菌的最低生長(zhǎng)溫度時(shí),細(xì)菌代謝活動(dòng)受抑制。為了研究某種細(xì)菌繁殖的個(gè)數(shù)是否與在一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種細(xì)菌的6組觀測(cè)數(shù)據(jù)如下表:

經(jīng)計(jì)算得:,,線性回歸模型的殘差平方和.其中分別為觀測(cè)數(shù)據(jù)中的溫度與繁殖數(shù),.

參考數(shù)據(jù):,,

(Ⅰ)求關(guān)于的線性回歸方程(精確到0.1);

(Ⅱ)若用非線性回歸模型求得關(guān)于回歸方程為,且非線性回歸模型的殘差平方和

(。┯孟嚓P(guān)指數(shù)說(shuō)明哪種模型的擬合效果更好;

(ⅱ)用擬合效果好的模型預(yù)測(cè)溫度為34℃時(shí)該種細(xì)菌的繁殖數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)為;

相關(guān)指數(shù)

【答案】(1);(2) (。見(jiàn)解析; (ⅱ)見(jiàn)解析.

【解析】分析:(Ⅰ)由題中所給數(shù)據(jù)和公式分別求得,即可求得線性回歸方程。

(Ⅱ)由(1)中線性回歸方程對(duì)應(yīng)的相關(guān)指數(shù),和非線性回歸模型對(duì)應(yīng)的相關(guān)指數(shù),比較大小可得,所以回歸方程比線性回歸方程擬合效果更好。把溫度代入指數(shù)回歸方程,可得該種細(xì)菌的繁殖數(shù)估計(jì)為128個(gè)。

詳解:(Ⅰ)由題意得:,

,

所以關(guān)于的線性回歸方程為.

(Ⅱ)(ⅰ)線性回歸方程對(duì)應(yīng)的相關(guān)指數(shù)為

非線性回歸模型對(duì)應(yīng)的相關(guān)指數(shù)為

因?yàn)?/span>,所以

所以回歸方程比線性回歸方程擬合效果更好

(ⅱ)由()得當(dāng)溫度時(shí),

即當(dāng)溫度時(shí),該種細(xì)菌的繁殖數(shù)估計(jì)為128個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)時(shí),求證:;

2)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).

(1)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍;

(2)已知正數(shù)滿足:存在,使得成立.試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)的最小值為-1,,數(shù)列滿足,記,表示不超過(guò)的最大整數(shù).證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點(diǎn)都在上,且點(diǎn),依逆時(shí)針次序排列,點(diǎn)的極坐標(biāo)為.

(1)求點(diǎn),,的直角坐標(biāo);

(2)設(shè)上任意一點(diǎn),求點(diǎn)到直線距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;

(2)若 恒成立,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,.

(1)當(dāng)時(shí),判斷曲線與曲線的位置關(guān)系;

(2)當(dāng)曲線上有且只有一點(diǎn)到曲線的距離等于時(shí),求曲線上到曲線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面

(2)過(guò)點(diǎn)作一平行于平面的截面,畫(huà)出該截面,說(shuō)明理由,并求夾在該截面與平面之間的幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案