【題目】為了解某冷飲店的經營狀況,隨機記錄了該店月的月營業(yè)額(單位:萬元)與月份的數(shù)據(jù),如下表:

(1)求關于的回歸直線方程;

(2)若在這樣本點中任取兩點,求恰有一點在回歸直線上的概率.

附:回歸直線方程中,

,.

【答案】(1)(2)

【解析】分析:(1)根據(jù)題意計算平均數(shù)與回歸系數(shù),寫出回歸方程;

詳解:(2)用,分別表示所取的兩個樣本點所在的月份,則該試驗的基本事件用列舉法可得包含個基本事件,設“恰有一點在回歸直線上”為事件,則包含個基本事件,用古典概型直接求概率即可。

(1),,,,所以,

于是,所以回歸有線方程為:.

(2)用,分別表示所取的兩個樣本點所在的月份,則該試驗的基本事件可以表示為有序實數(shù)對,于是該試驗的基本事件空間為:

,共包含個基本事件,

設“恰有一點在回歸直線上”為事件,則中,共包含個基本事件,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內的學生中,用分層抽樣的方法選取28人參加一項活動,則從身高在[120,130)內的學生中選取的人數(shù)應為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面給出一個問題的算法:

S1 輸入x;

S2 x≤2,則執(zhí)行S3;否則,執(zhí)行S4;

S3 輸出-2x-1;

S4 輸出x2-6x+3.

問題:

(1)這個算法解決的是什么問題?

(2)當輸入的x值為多大時,輸出的數(shù)值最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為 的中點, 為線段上的動點,過點 , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號).

①當時, 為四邊形;②當時, 為等腰梯形;

③當時, 的交點滿足;

④當時, 為五邊形;

⑤當時, 的面積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長為2的正三角形.

(1)證明: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為ρ=2 sin( ),直線C的極坐標方程為ρsinθ=1,射線θ=φ,θ= +φ(φ∈[0,π])與曲線C1分別交異于極點O的兩點A,B.
(I)把曲線C1和C2化成直角坐標方程,并求直線C2被曲線C1截得的弦長;
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知點D在BC邊上,AD⊥AC,sin∠BAC= ,AB=3 ,AD=3,則BD的長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是邊長為3的正方形, 平面, 平面, .

(1)證明:平面平面;

(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)直線l過點P4,1),

1)若直線l過點Q(-1,6),求直線l的方程;

2)若直線ly軸上的截距是在x軸上的截距的2倍,求直線l的方程.

查看答案和解析>>

同步練習冊答案