【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃都命中的概率:先由計(jì)算機(jī)產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4,5表示命中;6,7,8,9,0表示不命中,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
162 966 151 525 271 932 592 408 569 683
471 257 333 027 554 488 730 163 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃都命中的概率為
A. 0.15 B. 0.2 C. 0.25 D. 0.35
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn).
(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,﹣3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),若直線AB的斜率為,求四邊形APBQ面積的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為弘揚(yáng)優(yōu)良傳統(tǒng),展示80年來的辦學(xué)成果,特舉辦“建校80周年教育成果展示月”活動(dòng),F(xiàn)在需要招募活動(dòng)開幕式的志愿者,在眾多候選人中選取100名志愿者,為了在志愿者中選拔出節(jié)目主持人,現(xiàn)按身高分組,得到的頻率分布表如圖所示
(1)請(qǐng)補(bǔ)充頻率分布表中空白位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
(2)為選拔出主持人,決定在第3、4、5組中用分層抽樣抽取6人上臺(tái),求第3、4、5組每組各抽取多少人?
(3)在(2)的前提下,主持人會(huì)在上臺(tái)的6人中隨機(jī)抽取2人表演詩歌朗誦,求第3組至少有一人被抽取的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時(shí),,則使得成立的的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):
(Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?(Ⅱ)①現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出3人贈(zèng)送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式: ,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中, 和是邊長為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為, 上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和為4,當(dāng)點(diǎn)運(yùn)動(dòng)到橢圓的上頂點(diǎn)時(shí),直線恰與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,若交直線于兩點(diǎn).問以為直徑的圓是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,透明塑料制成的長方體ABCD﹣A1B1C1D1內(nèi)灌進(jìn)一些水,固定容器底面一邊BC于水平地面上,再將容器傾斜,隨著傾斜度不同,有下面五個(gè)命題:
①有水的部分始終呈棱柱形;
②沒有水的部分始終呈棱柱形;
③水面EFGH所在四邊形的面積為定值;
④棱A1D1始終與水面所在平面平行;
⑤當(dāng)容器傾斜如圖(3)所示時(shí),BEBF是定值.
其中所有正確命題的序號(hào)是 ____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com