【題目】若動(dòng)點(diǎn)P到點(diǎn)F(0,1)的距離比它到直線y=﹣2的距離少1,則動(dòng)點(diǎn)P的軌跡C的方程為_____,若過(guò)點(diǎn)(2,1)作該曲線C的切線l,則切線l的方程為_____
【答案】x2=4y y=x﹣1.
【解析】
設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),代入化簡(jiǎn)得到答案,設(shè)過(guò)點(diǎn)(2,1)的直線方程為y=k(x﹣2)+1,計(jì)算得到答案.
設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),由題意可知:;
∴x2=4y;動(dòng)點(diǎn)P的軌跡C方程為x2=4y;
設(shè)過(guò)點(diǎn)(2,1)的直線方程為y=k(x﹣2)+1;
①當(dāng)k不存在時(shí),則直線方程為x=2,與曲線C不相切;
②當(dāng)k存在時(shí),聯(lián)立,
∴x2﹣4kx+8k﹣4=0.∵直線與曲線C相切,∴△=16k2﹣32k+16=0;解得k=1;
切線l的方程為y=x﹣1.
故答案為:;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿(mǎn)意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿(mǎn)分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫(huà)出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問(wèn)題:
(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校從參加高二年級(jí)期末考試的學(xué)生中抽出一些學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿(mǎn)分為100分),所得數(shù)據(jù)整理后,列出了如下頻率分布表.
分組 | 頻數(shù) | 頻率 |
[40,50) | A | 0.04 |
[50,60) | 4 | 0.08 |
[60,70) | 20 | 0.40 |
[70,80) | 15 | 0.30 |
[80,90) | 7 | B |
[90,100] | 2 | 0.04 |
合計(jì) | C | 1 |
(1)在給出的樣本頻率分布表中,求A,B,C的值;
(2)補(bǔ)全頻率分布直方圖,并利用它估計(jì)全體高二年級(jí)學(xué)生期末數(shù)學(xué)成績(jī)的眾數(shù)、中位數(shù);
(3)現(xiàn)從分?jǐn)?shù)在[80,90),[90,100]的9名同學(xué)中隨機(jī)抽取兩名同學(xué),求被抽取的兩名學(xué)生分?jǐn)?shù)均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,是離心率為的橢圓的左、右頂點(diǎn),,是該橢圓的左、右焦點(diǎn),,是直線上兩個(gè)動(dòng)點(diǎn),連接和,它們分別與橢圓交于點(diǎn),兩點(diǎn),且線段恰好過(guò)橢圓的左焦點(diǎn).當(dāng)時(shí),點(diǎn)恰為線段的中點(diǎn).
(1)求橢圓的方程;
(Ⅱ)判斷以為直徑的圓與直線位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C1的普通方程為,曲線C2參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求C1的參數(shù)方程和的直角坐標(biāo)方程;
(2)已知P是C2上參數(shù)對(duì)應(yīng)的點(diǎn),Q為C1上的點(diǎn),求PQ中點(diǎn)M到直線的距離取得最大值時(shí),點(diǎn)Q的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線向左平移個(gè)單位長(zhǎng)度得到曲線.
(1)求曲線的參數(shù)方程;
(2)已知為曲線上的動(dòng)點(diǎn), 兩點(diǎn)的極坐標(biāo)分別為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校從參加高二年級(jí)期末考試的學(xué)生中抽出一些學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿(mǎn)分為100分),所得數(shù)據(jù)整理后,列出了如下頻率分布表.
分組 | 頻數(shù) | 頻率 |
[40,50) | A | 0.04 |
[50,60) | 4 | 0.08 |
[60,70) | 20 | 0.40 |
[70,80) | 15 | 0.30 |
[80,90) | 7 | B |
[90,100] | 2 | 0.04 |
合計(jì) | C | 1 |
(1)在給出的樣本頻率分布表中,求A,B,C的值;
(2)補(bǔ)全頻率分布直方圖,并利用它估計(jì)全體高二年級(jí)學(xué)生期末數(shù)學(xué)成績(jī)的眾數(shù)、中位數(shù);
(3)現(xiàn)從分?jǐn)?shù)在[80,90),[90,100]的9名同學(xué)中隨機(jī)抽取兩名同學(xué),求被抽取的兩名學(xué)生分?jǐn)?shù)均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底而ABCD是菱形,且PA=AD=2,∠PAD=∠BAD=120°,E,F分別為PD,BD的中點(diǎn),且.
(1)求證:平面PAD⊥平面ABCD;
(2)求銳二面角E-AC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且在區(qū)間上單調(diào)遞減,.設(shè),則滿(mǎn)足的的取值范圍是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com