【題目】如圖,在正四棱柱中,,,建立如圖所示的空間直角坐標(biāo)系.

(1)若,求異面直線(xiàn)所成角的大;

(2)若,求直線(xiàn)與平面所成角的正弦值;

(3)若二面角的大小為,求實(shí)數(shù)的值.

【答案】(1)異面直線(xiàn)所成角為;(2)與平面所成角的正弦值為;(3)二面角的大小為,的值為.

【解析】分析:(1)由題意可得的坐標(biāo),可得夾角的余弦值;

(2)求出平面的法向量,即可求出答案;

(3)設(shè),表示出平面的法向量和平面的法向量,利用二面角的大小為,即可求出t.

詳解:(1)當(dāng)時(shí),,,,,

,

,

,

所以異面直線(xiàn)所成角為

(2)當(dāng)時(shí),,,,,,

,,

設(shè)平面的法向量,

則由得,

不妨取,則, 此時(shí)

設(shè)與平面所成角為,因?yàn)?/span>,

,

所以與平面所成角的正弦值為

(3)由得,,,

設(shè)平面的法向量

則由得,

不妨取,則, 此時(shí),

又平面的法向量,

,解得

由圖形得二面角大于,所以符合題意.

所以二面角的大小為,的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三個(gè)警亭有直道相通,已知的正北方向6千米處,的正東方向千米處.

(1)警員甲從出發(fā),沿行至點(diǎn)處,此時(shí),求的距離;

(2)警員甲從出發(fā)沿前往,警員乙從出發(fā)沿前往,兩人同時(shí)出發(fā),甲的速度為3千米/小時(shí),乙的速度為6千米/小時(shí).兩人通過(guò)專(zhuān)用對(duì)講機(jī)保持聯(lián)系,乙到達(dá)后原地等待,直到甲到達(dá)時(shí)任務(wù)結(jié)束.若對(duì)講機(jī)的有效通話(huà)距離不超過(guò)9千米,試問(wèn)兩人通過(guò)對(duì)講機(jī)能保持聯(lián)系的總時(shí)長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鞏固全國(guó)文明城市創(chuàng)建成果,今年吉安市開(kāi)展了拆除違章搭建鐵皮棚專(zhuān)項(xiàng)整治行為.為了了解市民對(duì)此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度,隨機(jī)從存在違章搭建的戶(hù)主中抽取了男性、女性共名進(jìn)行調(diào)查,調(diào)查結(jié)果如下:

支持

反對(duì)

合計(jì)

男性

女性

合計(jì)

(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為對(duì)此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度與“性別”有關(guān);

(2)現(xiàn)從參與調(diào)查的女戶(hù)主中按此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度用分層抽樣的方法抽取人,從抽取的人中再隨機(jī)地抽取人贈(zèng)送小禮品,記這人中持“支持”態(tài)度的有人,求的分布列與數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 某汽車(chē)租賃公司為了調(diào)查A, B兩種車(chē)型的出租情況,現(xiàn)隨機(jī)抽取這兩種車(chē)型各50輛,分別統(tǒng)計(jì)了每輛車(chē)在某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:

A型車(chē)

出租天數(shù)

3

4

5

6

7

車(chē)輛數(shù)

3

30

5

7

5

B型車(chē)

出租天數(shù)

3

4

5

6

7

車(chē)輛數(shù)

10

10

15

10

5

(1)試根據(jù)上面的統(tǒng)計(jì)數(shù)據(jù),判斷這兩種車(chē)型在本星期內(nèi)出租天數(shù)的方差的大小關(guān)系(只需寫(xiě)出結(jié)果);

(2)現(xiàn)從出租天數(shù)為3天的汽車(chē)(僅限A, B兩種車(chē)型)中隨機(jī)抽取一輛,試估計(jì)這輛汽車(chē)是A型車(chē)的概率;

(3)如果兩種車(chē)型每輛車(chē)每天出租獲得的利潤(rùn)相同,該公司需要購(gòu)買(mǎi)一輛汽車(chē),請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),給出建議應(yīng)該購(gòu)買(mǎi)哪一種車(chē)型,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn))的焦點(diǎn)為,拋物線(xiàn)上存在一點(diǎn)到焦點(diǎn)的距離為3,且點(diǎn)在圓上.

(Ⅰ)求拋物線(xiàn)的方程;

(Ⅱ)已知橢圓)的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且離心率為.直線(xiàn)交橢圓兩個(gè)不同的點(diǎn),若原點(diǎn)在以線(xiàn)段為直徑的圓的外部,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),個(gè)人購(gòu)買(mǎi)家庭轎車(chē)已不再是一種時(shí)尚.車(chē)的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車(chē)一族非常關(guān)心的問(wèn)題.某汽車(chē)銷(xiāo)售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車(chē)的使用年限(單位:年)與所支出的總費(fèi)用(單位:萬(wàn)元)有如下的數(shù)據(jù)資料:

使用年限

2

3

4

5

6

總費(fèi)用

2.2

3.8

5.5

6.5

7.0

若由資料知對(duì)呈線(xiàn)性相關(guān)關(guān)系.

線(xiàn)性回歸方程系數(shù)公式:,.

1)試求線(xiàn)性回歸方程的回歸系數(shù);

(2)當(dāng)使用年限為10年時(shí),估計(jì)車(chē)的使用總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和為, ,數(shù)列滿(mǎn)足: , ,數(shù)列的前n項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出T=6,那么判斷框內(nèi)應(yīng)填入的條件是(
A.k<32
B.k<33
C.k<64
D.k<65

查看答案和解析>>

同步練習(xí)冊(cè)答案