【題目】如圖,已知三棱柱的所有棱長都相等,且側(cè)棱垂直于底面,由沿棱柱側(cè)面經(jīng)過棱到點的最短路線長為,設(shè)這條最短路線與的交點為.
(1)求三棱柱的體積;
(2)證明:平面平面.
【答案】(1) (2)詳見解析
【解析】試題分析:(1)由題意求出棱長,再求出三棱柱ABC-A1B1C1的底面面積,再求出高AA1,即可求出棱柱的體積.(2)連接AD,B1D,平面A1BD內(nèi)的直線OD垂直平面A1ABB1內(nèi)的兩條相交直線A1B,AB1,即可證明平面A1BD⊥平面A1ABB1.
試題解析:
(1)如圖,將側(cè)面繞棱旋轉(zhuǎn)使其與側(cè)面在同一平面上,點運動到點的位置,連接,則就是由點沿棱柱側(cè)面經(jīng)過棱到點的最短路線.
設(shè)棱柱的棱長為,則,
∵,∴為的中點,
在中,由勾股定理得,
即解得,
∵,
∴.
(2)設(shè)與的交點為,連結(jié),
∵,
∴,∴,
∵,∴平面.
又∵平面,∴平面平面.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點B(0,﹣1),且在( , )上單調(diào),同時f(x)的圖象向左平移π個單位之后與原來的圖象重合,當x1 , x2∈(﹣ ,﹣ ),且x1≠x2時,f(x1)=f(x2),則f(x1+x2)=( )
A.﹣
B.﹣1
C.1
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)(sinx+cosx)2+2cos2x﹣2
(1)求函數(shù)f(x)的最小正周期T;
(2)求f(x)的最大值,并指出取得最大值時x取值集合;
(3)當x∈[ , ]時,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從6名學生會干部(其中男生4人,女生2人)中選3人參加青年聯(lián)合會志愿者。
(1)設(shè)所選3人中女生人數(shù)為 ,求 的分布列及數(shù)學期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系 中,過橢圓 : ( )右焦點的直線 交 于 , 兩點, 為 的中點,且 的斜率為 .
(Ⅰ)求橢圓 的方程;
(Ⅱ) , 為 上的兩點,若四邊形 . 的對角線 ,求四邊形 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù);命題q:x∈R,x2+x+m<0,若“p或q”是真命題,則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱柱的所有棱長都相等,且側(cè)棱垂直于底面,由沿棱柱側(cè)面經(jīng)過棱到點的最短路線長為,設(shè)這條最短路線與的交點為.
(1)求三棱柱的體積;
(2)證明:平面平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一種新型的洗衣液,去污速度特別快.已知每投放(且)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間 (分鐘) 變化的函數(shù)關(guān)系式近似為,其中.根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若投放個單位的洗衣液,3分鐘時水中洗衣液的濃度為4 (克/升),求的值;
(2)若投放4個單位的洗衣液,則有效去污時間可達幾分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com